### Related

##### unique

lista : [1, 2, 2, 3, ...

lista;

lista : unique(lista);

Calculate

##### unique

a:[1,2,3,2,3,4,2,1,5];

unique(a);

Calculate

? unique;

Calculate

##### unique

unique ([1, %pi, a + ...

Calculate

##### unique

lista : [1, 2, 2, 3, ...

lista;

lista : unique(lista);

Calculate

##### unique

a:[1,2,3,2,3,4,2,1,5];

unique(a);

Calculate

? unique;

Calculate

##### unique

unique ([1, %pi, a + ...

Calculate

### unique

Run Example
```(%i1)load (newton1);
(%o1)         /usr/share/maxima/5.21.1/share/numeric/newton1.mac
(%i2) eq1:sin(x)+cos(3*x)+1;
(%o2)                        cos(3 x) + sin(x) + 1
(%i3) plot2d(eq1,[x,-3.2,3.2]);
plotli:makelist (i/4, i, -3, 3);
3    1    1     1  1  3
(%o4)                     [- -, - -, - -, 0, -, -, -]
4    2    4     4  2  4
(%i5) sols:unique(map(round,flatten(sort(outermap(newton, [eq1], [x], li, [1E-6]))*1000))/1000),numer;
(%o5)             [- 3.142, - 2.912, - 0.657, 3.142, 11.909]
(%i6) ```
Run Example
```m: matrix([1,1,0],[1,2,1],[0,1,0]);
[ 1  1  0 ]
[         ]
(%o1)                             [ 1  2  1 ]
[         ]
[ 0  1  0 ]
(%i2) v: [x,y,1];
(%o2)                              [x, y, 1]
(%i3) e: expand(v.m.transpose(v));
2                  2
(%o3)                       2 y  + 2 x y + 2 y + x
(%i4) eq: rat(expand(e-(a^2+b^2)*((x-x1)^2+(y-y1)^2)-(a*x+b*y+c)^2),y,x);
2      2       2                          2      2
(%o4)/R/ (- b  - 2 a  + 1) x  + ((- 2 a b + 2) y + (2 b  + 2 a ) x1 - 2 a c) x
2    2       2        2      2                          2    2    2
+ (- 2 b  - a  + 2) y  + ((2 b  + 2 a ) y1 - 2 b c + 2) y + (- b  - a ) y1
2    2    2    2
+ (- b  - a ) x1  - c
(%i5) eqlist: [];
(%o5)                                 []
(%i6) for i:0 thru 2 do ( for j:0 thru 2 do ( eqlist: append(eqlist,[coeff(coeff(eq,x,i),y,j)])));
(%o6)                                done
(%i7) length(eqlist);
(%o7)                                  9
(%i8) eqlist: unique(delete(0,eqlist));
2    2         2      2
(%o8)/R/ [- 2 a b + 2, - 2 b  - a  + 2, - b  - 2 a  + 1,
2      2                  2      2
(2 b  + 2 a ) x1 - 2 a c, (2 b  + 2 a ) y1 - 2 b c + 2,
2    2    2       2    2    2    2
(- b  - a ) y1  + (- b  - a ) x1  - c ]
(%i9) solve(expand(eliminate(eqlist,[c])),[a,b]);
(%o9)                                 []
(%i10) ```
Run Example
```monomials(eq,varlist,deg):=block(    [leq,len,lvarlist,deglist,monlist.i],        if nonnegintegerp(deg)=true then error(""),        lvarlist: unique(varlist),    len: length(lvarlist),    leq: expand(rat(eq)),    monlist: [],    for i:1 thru length(leq) do (        deglist: makelist(hipow(part(i,leq),lvarlist[ii]),ii,1,len),        if sum(deglist[ii],ii,1,len)=deg then (            monlist: append(monlist,[product(lvarlist[ii]^deglist[ii],ii,1,len)])        )    ),        return(monlist));
(%o1) monomials(eq, varlist, deg) := block([leq, len, lvarlist, deglist,
monlist . i], if nonnegintegerp(deg) = true then error(""),
lvarlist : unique(varlist), len : length(lvarlist), leq : expand(rat(eq)),
monlist : [], for i thru length(leq) do (deglist :
makelist(hipow(part(i, leq), lvarlist  ), ii, 1, len),
ii
if sum(deglist  , ii, 1, len) = deg then monlist :
ii
deglist
ii
append(monlist, [product(lvarlist         , ii, 1, len)])), return(monlist))
ii
(%i2) monomial_coeff(eq,monomial):=block(    [leq,varlist,len,deglist],        leq: rat(eq),    varlist: listofvars(monomial),    len: length(varlist),    deglist: makelist(hipow(monomial,varlist[ii]),ii,1,len),    for i:1 thru len do (        leq: coeff(leq,varlist[i],deglist[i])    ),        return(leq));
(%o2) monomial_coeff(eq, monomial) := block([leq, varlist, len, deglist],
leq : rat(eq), varlist : listofvars(monomial), len : length(varlist),
deglist : makelist(hipow(monomial, varlist  ), ii, 1, len),
ii
for i thru len do leq : coeff(leq, varlist , deglist ), return(leq))
i         i
(%i3) ```

Help for Unique