Sponsored links: Algebra eBooks
 

Related

true

f:c or ((not a) or (n...

f,a=false,b=false,c=f...

f,a=false,b=false,c=f...

Calculate

true

%enumer:true;

ln(2),numer;

Calculate

true

minimize_lp(4*x11+3*x...

Calculate

true

f:B and C and not D;

f,B=false,C=false,D=t...

Calculate

true

/*Solstice c*/f: a3 a...

f, a3 = false, a2 = f...

f, a3 = false, a2 = f...

Calculate

true

ol1: is1 and not is2 ...

ol1, is1=false,is2=fa...

ol1, is1=false,is2=fa...

Calculate

true

f: a3 and a2 and not ...

f, a3 = false, a2 = f...

f, a3 = false, a2 = f...

Calculate

true

t1: a1 and a0;

t2: a2 and a0;

t3: (not a2) and (not...

Calculate

true

eq0: (not i1) or i3 o...

eq1: (i3 and i2) or (...

eq2: (i3 and (i2 or i...

Calculate

true

f:b or (c and d);

f,a=false,b=false,c=f...

f,a=false,b=false,c=f...

Calculate

true

Run Example
(%i1)derivabbrev:true ;
(%o1)                                true
(%i2) mainvar: t;
(%o2)                                  t
(%i3) x(t):= r(t)*sin(theta(t));
(%o3)                     x(t) := r(t) sin(theta(t))
(%i4) y(t):=r(t)*cos(theta(t));
(%o4)                     y(t) := r(t) cos(theta(t))
(%i5) xdot(t):= diff(x(t), t, 1);
(%o5)                     xdot(t) := diff(x(t), t, 1)
(%i6) ydot(t):= diff(y(t), t, 1);
(%o6)                     ydot(t) := diff(y(t), t, 1)
(%i7) xdotdot(t):= diff(xdot(t), t, 1);
(%o7)                  xdotdot(t) := diff(xdot(t), t, 1)
(%i8) ydotdot(t):= diff(ydot(t), t, 1);
(%o8)                  ydotdot(t) := diff(ydot(t), t, 1)
(%i9) thetadot(t):= diff(theta(t), t, 1);
(%o9)                 thetadot(t) := diff(theta(t), t, 1)
(%i10) thetadotdot(t) := diff(thetadot(t), t, 1);
(%o10)             thetadotdot(t) := diff(thetadot(t), t, 1)
(%i11) Assumption1: xdotdot(t)=0;
                                                                      2
(%o11) r(t) cos(theta(t)) theta(t)    - r(t) sin(theta(t)) (theta(t) )
                                  t t                               t
                  + 2 r(t)  cos(theta(t)) theta(t)  + r(t)    sin(theta(t)) = 0
                          t                       t       t t
(%i12) solve(Assumption1, r(t));
                 sin(theta(t)) r(t)    + 2 cos(theta(t)) theta(t)  r(t)
                                   t t                           t     t
(%o12) [r(t) = - -------------------------------------------------------]
                                                                      2
                 cos(theta(t)) theta(t)    - sin(theta(t)) (theta(t) )
                                       t t                          t
(%i13) Assumption2: ydotdot(t)=0;
                                                                        2
(%o13) - r(t) sin(theta(t)) theta(t)    - r(t) cos(theta(t)) (theta(t) )
                                    t t                               t
                  - 2 r(t)  sin(theta(t)) theta(t)  + r(t)    cos(theta(t)) = 0
                          t                       t       t t
(%i14) E1_1: subst(rdot(t), diff(r(t), t, 1), Assumption1);
                                                                      2
(%o14) r(t) cos(theta(t)) theta(t)    - r(t) sin(theta(t)) (theta(t) )
                                  t t                               t
                + 2 rdot(t) cos(theta(t)) theta(t)  + r(t)    sin(theta(t)) = 0
                                                  t       t t
(%i15) E1_2: subst(rdotdot(t), diff(diff(r(t), t, 1),t,1), E1_1);
                                                                      2
(%o15) r(t) cos(theta(t)) theta(t)    - r(t) sin(theta(t)) (theta(t) )
                                  t t                               t
             + 2 rdot(t) cos(theta(t)) theta(t)  + rdotdot(t) sin(theta(t)) = 0
                                               t
(%i16) E1_3: subst(rr(t), r(t), E1_2);
                                                                        2
(%o16) rr(t) cos(theta(t)) theta(t)    - rr(t) sin(theta(t)) (theta(t) )
                                   t t                                t
             + 2 rdot(t) cos(theta(t)) theta(t)  + rdotdot(t) sin(theta(t)) = 0
                                               t
(%i17) E1_4: solve(E1_3, rr(t));
                  2 rdot(t) cos(theta(t)) theta(t)  + rdotdot(t) sin(theta(t))
                                                  t
(%o17) [rr(t) = - ------------------------------------------------------------]
                                                                          2
                     cos(theta(t)) theta(t)    - sin(theta(t)) (theta(t) )
                                           t t                          t
(%i18) E1_5: subst(r(t), rr(t), E1_4[1]);
                2 rdot(t) cos(theta(t)) theta(t)  + rdotdot(t) sin(theta(t))
                                                t
(%o18) r(t) = - ------------------------------------------------------------
                                                                        2
                   cos(theta(t)) theta(t)    - sin(theta(t)) (theta(t) )
                                         t t                          t
(%i19) 
Run Example
numer:true;
(%o1)                                true
(%i2) sqrt(34);
(%o2)                          5.830951894845301
(%i3) 
Run Example
declare(m,integer);
(%o1)                                done
(%i2) factorial_expand:true;
(%o2)                                true
(%i3) epsilon(n,k):=(binomial(n,k)*gamma(3/2)/gamma(3/2-n+k)-(-1)^n*binomial(n-1,k-1)*n!/k!);
                                            3
                       binomial(n, k) gamma(-)
                                            2
(%o3) epsilon(n, k) := -----------------------
                                3
                          gamma(- - n + k)
                                2
                                                    n
                                               (- 1)  binomial(n - 1, k - 1) n!
                                             - --------------------------------
                                                              k!
(%i4) G(m):=-m*(4*m-3)/2;
                                    (- m) (4 m - 3)
(%o4)                       G(m) := ---------------
                                           2
(%i5) rat(epsilon(2*m,2*m-4)-G(m)*epsilon(2*m-1,2*m-4));
                8         7          6          5          4          3
(%o5)/R/ (1024 m  - 8704 m  + 30976 m  - 59680 m  + 67036 m  - 43756 m
                                                                 2
                                                        + 15309 m  - 2205 m)/96
(%i6) epsilon(4,1)-G(2)*epsilon(3,1);
                                      15
(%o6)                                 --
                                      4
(%i7) epsilon(2,1);
(%o7)                                 - 1
(%i8) epsilon(2,0);
                                        1
(%o8)                                 - -
                                        4
(%i9) 
[algsys,diff,obase,plot2d,realonly,true] [and,or,true] [and,true] [append,ascii,block,concat,copylist,delete,divsum,first,if,make_random_state,next_prime,second,set_random_state,slength,substring,true] [append,ascii,block,concat,delete,divsum,first,if,make_random_state,next_prime,second,set_random_state,slength,substring,true] [append,block,debugmode,print,return,rhs,true] [backsubst,linsolve_params,linsolvewarn,true] [bfloat,cos,diff,globalsolve,linsolve,phi,sin,true] [binomial,numer,true] [block,concat,do,kill,makelist,obase,return,stringdisp,true,while] [christof,einstein,exp,load,matrix,riemann,scurvature,sin,true] [christof,einstein,load,matrix,riemann,scurvature,sin,true] [cos,determinant,invert,mat_trace,matrix,numer,sin,trace,transpose,true] [cos,expand,factor,halfangles,integrate,sin,trigexpand,true] [cos,globalsolve,linsolve,plot2d,sin,true] [cos,invert,matrix,numer,sin,transpose,true] [debugmode,diff,plot2d,true] [debugmode,integrate,true] [debugmode,load,true] [debugmode,matrix,true] [debugmode,plot2d,sin,true] [debugmode,plot2d,true] [debugmode,solve,true] [debugmode,true] [diff,globalsolve,kill,linsolve,phi,true] [diff,globalsolve,linsolve,phi,true] [diff,globalsolve,linsolve,true] [diff,globalsolve,true] [einstein,false,invert,kill,load,ratfac,ratriemann,rinvariant,scurvature,sin,true] [ev,horner,keepfloat,true] [exp,float,globalsolve,linsolve,plot2d,true] [exp,numer,plot2d,sqrt,true] [exp,numer,plot2d,true] [exp,numer,true] [expand,powerdisp,true] [false,invert,load,rateinstein,ratfac,ratriemann,sin,true] [globalsolve,linsolve,phi,true] [globalsolve,linsolve,plot2d,true] [globalsolve,linsolve,true] [globalsolve,true] [horner,keepfloat,true] [hypergeometric,true] [inf,makelist,numer,powerdisp,simpsum,sum,true] [inf,sum,true] [linsolve,numer,true] [load,matrix,sin,true] [load,matrix,true] [load,slength,string,true,union] [load,true] [mod,numer,true]

Related Help

Help for True