? triginverses;

Calculate

? triginverses;

Calculate

triginverses

Run Example
```(%i1)? triginverses;

-- Option variable: triginverses
Default value: `true'

`triginverses' controls the simplification of the composition of
trigonometric and hyperbolic functions with their inverse
functions.

If `all', both e.g. `atan(tan(<x>))' and `tan(atan(<x>))' simplify
to <x>.

If `true', the `<arcfun>(<fun>(<x>))' simplification is turned off.

If `false', both the `<arcfun>(<fun>(<x>))' and
`<fun>(<arcfun>(<x>))' simplifications are turned off.

(%o1)                                true
(%i2) ```
Run Example
```kill(all);
(%o0)                                done
(%i1) f:cos((x+100)/r)=2*cos(x/r);
x + 100          x
(%o1)                       cos(-------) = 2 cos(-)
r             r
(%i2) triginverses:all;
(%o2)                                 all
(%i3) solve(f,x);
x + 100
cos(-------)
x           r
(%o3)                       [cos(-) = ------------]
r         2
(%i4) ```
Run Example
```load(ntrig);
(%o1)        /usr/share/maxima/5.21.1/share/trigonometry/ntrig.mac
(%i2) describe(ntrig);

-- Package: ntrig
The `ntrig' package contains a set of simplification rules that are
used to simplify trigonometric function whose arguments are of the
form `<f>(<n> %pi/10)' where <f> is any of the functions `sin',
`cos', `tan', `csc', `sec' and `cot'.

(%o2)                                true
(%i3) triginverses:false;
(%o3)                                false
(%i4) solve(sin(x), x);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%o4)                               [x = 0]
(%i5) ```

Related Help

Help for Triginverses