Sponsored links: Algebra eBooks
 

Related

triginverses

? triginverses;

Calculate

triginverses

? triginverses;

Calculate

triginverses

Run Example
(%i1)? triginverses;

 -- Option variable: triginverses
     Default value: `true'

     `triginverses' controls the simplification of the composition of
     trigonometric and hyperbolic functions with their inverse
     functions.

     If `all', both e.g. `atan(tan(<x>))' and `tan(atan(<x>))' simplify
     to <x>.

     If `true', the `<arcfun>(<fun>(<x>))' simplification is turned off.

     If `false', both the `<arcfun>(<fun>(<x>))' and
     `<fun>(<arcfun>(<x>))' simplifications are turned off.


(%o1)                                true
(%i2) 
Run Example
load(ntrig);
(%o1)        /usr/share/maxima/5.21.1/share/trigonometry/ntrig.mac
(%i2) describe(ntrig);

 -- Package: ntrig
     The `ntrig' package contains a set of simplification rules that are
     used to simplify trigonometric function whose arguments are of the
     form `<f>(<n> %pi/10)' where <f> is any of the functions `sin',
     `cos', `tan', `csc', `sec' and `cot'.


(%o2)                                true
(%i3) triginverses:false;
(%o3)                                false
(%i4) solve(sin(x), x);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%o4)                               [x = 0]
(%i5) 
Run Example
load(ntrig);
(%o1)        /usr/share/maxima/5.21.1/share/trigonometry/ntrig.mac
(%i2) load(atrig1);
(%o2)       /usr/share/maxima/5.21.1/share/trigonometry/atrig1.mac
(%i3) describe(ntrig);

 -- Package: ntrig
     The `ntrig' package contains a set of simplification rules that are
     used to simplify trigonometric function whose arguments are of the
     form `<f>(<n> %pi/10)' where <f> is any of the functions `sin',
     `cos', `tan', `csc', `sec' and `cot'.


(%o3)                                true
(%i4) describe(atrig1);

 -- Package: atrig1
     The `atrig1' package contains several additional simplification
     rules for inverse trigonometric functions.  Together with rules
     already known to Maxima, the following angles are fully
     implemented: `0', `%pi/6', `%pi/4', `%pi/3', and `%pi/2'.
     Corresponding angles in the other three quadrants are also
     available.  Do `load(atrig1);' to use them.


(%o4)                                true
(%i5) triginverses:false;
(%o5)                                false
(%i6) load(solver);
(%o6)      /usr/share/maxima/5.21.1/share/algebra/solver/solver.mac
(%i7) Solver([sin(x)=0], [x]);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%o7)                              [[x = 0]]
(%i8) find_root(sin(x),x, 0, 1);
(%o8)                                 0.0
(%i9) find_root(sin(x), x, 2, 4);
(%o9)                          3.141592653589793
(%i10) find_root(sin(x)=0,x,4,7);
(%o10)                         6.283185307179586
(%i11) 

Related Help

Help for Triginverses