? triginverses;

Calculate

? triginverses;

Calculate

### triginverses

Run Example
```(%i1)? triginverses;

-- Option variable: triginverses
Default value: `true'

`triginverses' controls the simplification of the composition of
trigonometric and hyperbolic functions with their inverse
functions.

If `all', both e.g. `atan(tan(<x>))' and `tan(atan(<x>))' simplify
to <x>.

If `true', the `<arcfun>(<fun>(<x>))' simplification is turned off.

If `false', both the `<arcfun>(<fun>(<x>))' and
`<fun>(<arcfun>(<x>))' simplifications are turned off.

(%o1)                                true
(%i2) ```
Run Example
```load(ntrig);
(%o1)        /usr/share/maxima/5.21.1/share/trigonometry/ntrig.mac
(%i2) describe(ntrig);

-- Package: ntrig
The `ntrig' package contains a set of simplification rules that are
used to simplify trigonometric function whose arguments are of the
form `<f>(<n> %pi/10)' where <f> is any of the functions `sin',
`cos', `tan', `csc', `sec' and `cot'.

(%o2)                                true
(%i3) triginverses:false;
(%o3)                                false
(%i4) solve(sin(x), x);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%o4)                               [x = 0]
(%i5) ```
Run Example
```load(ntrig);
(%o1)        /usr/share/maxima/5.21.1/share/trigonometry/ntrig.mac
(%o2)       /usr/share/maxima/5.21.1/share/trigonometry/atrig1.mac
(%i3) describe(ntrig);

-- Package: ntrig
The `ntrig' package contains a set of simplification rules that are
used to simplify trigonometric function whose arguments are of the
form `<f>(<n> %pi/10)' where <f> is any of the functions `sin',
`cos', `tan', `csc', `sec' and `cot'.

(%o3)                                true
(%i4) describe(atrig1);

-- Package: atrig1
The `atrig1' package contains several additional simplification
rules for inverse trigonometric functions.  Together with rules
already known to Maxima, the following angles are fully
implemented: `0', `%pi/6', `%pi/4', `%pi/3', and `%pi/2'.
Corresponding angles in the other three quadrants are also
available.  Do `load(atrig1);' to use them.

(%o4)                                true
(%i5) triginverses:false;
(%o5)                                false
(%o6)      /usr/share/maxima/5.21.1/share/algebra/solver/solver.mac
(%i7) Solver([sin(x)=0], [x]);

solve: using arc-trig functions to get a solution.
Some solutions will be lost.
(%o7)                              [[x = 0]]
(%i8) find_root(sin(x),x, 0, 1);
(%o8)                                 0.0
(%i9) find_root(sin(x), x, 2, 4);
(%o9)                          3.141592653589793
(%i10) find_root(sin(x)=0,x,4,7);
(%o10)                         6.283185307179586
(%i11) ```

### Related Help

Help for Triginverses