### Related

##### taylor

taylor (((1-x)^(-3)),...

taylor (1 - 9/4*(1-x)...

Calculate

##### taylor

taylor(z^-2 * (1/3)^2...

Calculate

##### taylor

f(x) := %e^(-x*x);

taylor(f(x), x, 0, 12);

Calculate

##### taylor

f:(1+x)^4;

f:taylor(f,x,0,8);

Calculate

##### taylor

rx:x-xc;

r:rx*rx;

taylor((rx/(r^2))*1,x...

Calculate

##### taylor

taylor((e^x-1)/x, x, ...

Calculate

##### taylor

rx:x-xc;

r:rx*rx;

taylor(1/x,x, 0, 3);

Calculate

##### taylor

eq1: (x^2 + d^2)/v^2;

eq2: taylor(eq1, x, 0...

Calculate

##### taylor

taylor (1/(1-R-R^2), ...

Calculate

##### taylor

taylor((e^x)/x, x, 0,...

Calculate

### taylor

Run Example
(%i1)taylor (sqrt (x + 1), x, 0, 5);
2    3      4      5
x   x    x    5 x    7 x
(%o1)/T/             1 + - - -- + -- - ---- + ---- + . . .
2   8    16   128    256
(%i2) 
Run Example
f(x):= log(x+1);
(%o1)                         f(x) := log(x + 1)
(%i2) T4(x):=taylor(f(x), x, 0, 4);
(%o2)                   T4(x) := taylor(f(x), x, 0, 4)
(%i3) T7(x):=taylor(f(x), x, 0, 7);
(%o3)                   T7(x) := taylor(f(x), x, 0, 7)
(%i4) T11(x):=taylor(f(x), x, 0, 11);
(%o4)                  T11(x) := taylor(f(x), x, 0, 11)
(%i5) T16(x):=taylor(f(x), x, 0, 16);
(%o5)                  T16(x) := taylor(f(x), x, 0, 16)
(%i6) fortran(T4(x));
-x**4/4.0E+0+x**3/3.0E+0-x**2/2.0E+0+x
(%o6)                                done
(%i7) fortran(T7(x));
x**7/7.0E+0-x**6/6.0E+0+x**5/5.0E+0-x**4/4.0E+0+x**3/3.0E+0-x**2/2
1   .0E+0+x
(%o7)                                done
(%i8) fortran(T11(x));
x**11/1.1E+1-x**10/1.0E+1+x**9/9.0E+0-x**8/8.0E+0+x**7/7.0E+0-x**6
1   /6.0E+0+x**5/5.0E+0-x**4/4.0E+0+x**3/3.0E+0-x**2/2.0E+0+x
(%o8)                                done
(%i9) fortran(T16(x));
-x**16/1.6E+1+x**15/1.5E+1-x**14/1.4E+1+x**13/1.3E+1-x**12/1.2E+1+
1   x**11/1.1E+1-x**10/1.0E+1+x**9/9.0E+0-x**8/8.0E+0+x**7/7.0E+0-x
2   **6/6.0E+0+x**5/5.0E+0-x**4/4.0E+0+x**3/3.0E+0-x**2/2.0E+0+x
(%o9)                                done
(%i10) tex(T4(x));
$$x-{{x^2}\over{2}}+{{x^3}\over{3}}-{{x^4}\over{4}}+\cdots$$
(%o10)                               false
(%i11) tex(T7(x));
$$x-{{x^2}\over{2}}+{{x^3}\over{3}}-{{x^4}\over{4}}+{{x^5}\over{5}}- {{x^6}\over{6}}+{{x^7}\over{7}}+\cdots$$
(%o11)                               false
(%i12) tex(T11(x));
$$x-{{x^2}\over{2}}+{{x^3}\over{3}}-{{x^4}\over{4}}+{{x^5}\over{5}}- {{x^6}\over{6}}+{{x^7}\over{7}}-{{x^8}\over{8}}+{{x^9}\over{9}}-{{x ^{10}}\over{10}}+{{x^{11}}\over{11}}+\cdots$$
(%o12)                               false
(%i13) tex(T16(x));
$$x-{{x^2}\over{2}}+{{x^3}\over{3}}-{{x^4}\over{4}}+{{x^5}\over{5}}- {{x^6}\over{6}}+{{x^7}\over{7}}-{{x^8}\over{8}}+{{x^9}\over{9}}-{{x ^{10}}\over{10}}+{{x^{11}}\over{11}}-{{x^{12}}\over{12}}+{{x^{13} }\over{13}}-{{x^{14}}\over{14}}+{{x^{15}}\over{15}}-{{x^{16}}\over{ 16}}+\cdots$$
(%o13)                               false
(%i14) plot2d ([f(x),T4(x),T7(x),T11(x),T16(x)],[x, -1.5, 1.5],[y, -4, 2],[legend, "log(1+x)", "y=T4", "y=T7", "y=T11", "y=T16"],[gnuplot_preamble,"set key left"]);
plot
Run Example
f(x) := %e^(-x*x);
(- x) x
(%o1)                          f(x) := %e
(%i2) g(x) := taylor(f(x), x, 8, 12);
(%o2)                   g(x) := taylor(f(x), x, 8, 12)
(%i3) 

Help for Taylor