### Related

? rreduce;

Calculate

##### rreduce

rreduce(f,[1,2,3]);

Calculate

##### rreduce

rreduce(f,[1,2,3,4]);

Calculate

##### rreduce

f(x,y):=10*x+y;

rreduce(f,[1,2,3]);

Calculate

? rreduce;

Calculate

##### rreduce

rreduce(f,[1,2,3]);

Calculate

##### rreduce

rreduce(f,[1,2,3,4]);

Calculate

##### rreduce

f(x,y):=10*x+y;

rreduce(f,[1,2,3]);

Calculate

### rreduce

Run Example
```(%i1)rreduce (f, [1, 2, 3]);
(%o1)                            f(1, f(2, 3))
(%i2)  rreduce (f, [1, 2, 3, 4]);
(%o2)                         f(1, f(2, f(3, 4)))
(%i3)  rreduce (f, [1, 2, 3], 4);
(%o3)                         f(1, f(2, f(3, 4)))
(%i4)  rreduce ("^", args ({a, b, c, d}));
d
c
b
(%o4)                                a
(%i5)  rreduce ("/", args ({a, b, c, d}));
a c
(%o5)                                 ---
b d
(%i6) ```
Run Example
```f(x,y):=x+10*y;
(%o1)                         f(x, y) := x + 10 y
(%i2) rreduce(f,reverse([135]));
(%o2)                                 135
(%i3) ```
Run Example
```largestRoot(p) := rreduce(max, map(rhs, realroots(p)), minf);
(%o1)    largestRoot(p) := rreduce(max, map(rhs, realroots(p)), minf)
(%i2) polynomialInequalityHolds(psmall, pbig, var, thres) := (p: expand(pbig - psmall), if numberp(p) then p >
= 0 else ( deg: hipow(p,var), c: ratcoef(p,var,deg), root: largestRoot(p), c >
0 and root <
floor(thres)+1 + rootsepsilon));
(%o2) polynomialInequalityHolds(psmall, pbig, var, thres) :=
(p : expand(pbig - psmall), if numberp(p) then p >= 0
else (deg : hipow(p, var), c : ratcoef(p, var, deg), root : largestRoot(p),
(c > 0) and (root < floor(thres) + 1 + rootsepsilon)))
(%i3) polynomialInequalityHolds(9*18*n, 9*(18*n+72), n, 0);
(%o3)                              648 >= 0
(%i4) if 0 then 1 else 2;
(%o4)                         if 0 then 1 else 2
(%i5) ```

Help for Rreduce