Sponsored links: Algebra eBooks
 

Related

rhs-solve

f(a,b):=idefint(%e^(-...

sol:solve(rhs(%o1));

Calculate

rhs-solve

b: .02;

v_i: 100;

m: 2;

Calculate

rhs-solve

PE: (1/2)*k*x^2;

KE: (1/2)*m*v_B^2;

eqn1: PE=KE;

Calculate

rhs-solve-subst

mx:x/2+k*y;

my:y/2+k*x;

f:(mx-x)^2+my^2=r^2;

Calculate

rhs-solve

dist2(P1,P2):=(P2[Y]-...

X:1;

Y:2;

Calculate

rhs-solve

e1:(1-p)^2+(1-q)^2=r^2;

e2:(2-p)^2+(3-q)^2=r^2;

e3:(3-p)^2+(5/2-q)^2=...

Calculate

rhs-solve

/* [wxMaxima batch fi...

/* [wxMaxima: input ...

/* [wxMaxima: input ...

Calculate

rhs-solve

f1:(-dx+a)^2+(-dy)^2+...

f2:(-dx+a/2)^2+(-dy+a...

f3:(-dx)^2+(-dy)^2+(-...

Calculate

rhs-solve-subst-taylor

fx:x/2+k*y-mx;

fy:y/2+k*x-my;

f:fx^2+fy^2=r^2;

Calculate

rhs-solve

eqn1 : a*x^2 + b*x + ...

soln1 : solve(eqn1,x);

x1 : rhs(soln1[1]);

Calculate

rhs

Run Example
(%i1)kill(all);
(%o0)                                done
(%i1) Ik:16;
(%o1)                                 16
(%i2) U0:92;
(%o2)                                 92
(%i3) a:I/Ik=1-(U/U0)^2;
                                            2
                                 I         U
(%o3)                            -- = 1 - ----
                                 16       8464
(%i4) l:solve(a,U);
(%o4)            [U = - 23 sqrt(16 - I), U = 23 sqrt(16 - I)]
(%i5) m:solve(a,I);
                                       2
                                      U  - 8464
(%o5)                          [I = - ---------]
                                         529
(%i6) define(I(U),rhs(m[1]));
                                         2
                                        U  - 8464
(%o6)                         I(U) := - ---------
                                           529
(%i7) define(U(I),rhs(l[2]));
(%o7)                       U(I) := 23 sqrt(16 - I)
(%i8) P(I,U):=I*U;
(%o8)                           P(I, U) := I U
(%i9) plot2d(I(U),[U,0,92], [xlabel, "U[V]"], [ylabel, "I[A]"]);
plotplot2d(I(U),[U,0,92], [xlabel, "U[V]"], [ylabel, "I[A]"]);plot2d(U(I),[I,0,16], [ylabel, "U[V]"], [xlabel, "I[A]"]);
plotplot2d(U(I),[I,0,16], [ylabel, "U[V]"], [xlabel, "I[A]"]);plot2d([P(I(U),U)],[U,0,92], [xlabel, "U[V]"], [ylabel, "P[W]"]);
plotplot2d([P(I(U),U)],[U,0,92], [xlabel, "U[V]"], [ylabel, "P[W]"]);plot2d([P(I,U(I))],[I,0,16], [xlabel, "I[A]"], [ylabel, "P[W]"], [grid, 10, 10]);
plotplot2d([P(I,U(I))],[I,0,16], [xlabel, "I[A]"], [ylabel, "P[W]"], [grid, 10, 10]);define(Iabgeleitet(U),diff(P(I(U),U),U));
                                            2    2
                                         2 U    U  - 8464
(%o13)               Iabgeleitet(U) := - ---- - ---------
                                         529       529
(%i14) define(Uabgeleitet(I),diff(P(U(I),I),I));
                                                       23 I
(%o14)        Uabgeleitet(I) := 23 sqrt(16 - I) - --------------
                                                  2 sqrt(16 - I)
(%i15) Umax:solve(Iabgeleitet(U),U);
                                  92           92
(%o15)                   [U = - -------, U = -------]
                                sqrt(3)      sqrt(3)
(%i16) Imax:solve(Uabgeleitet(I),I);
                                        32
(%o16)                             [I = --]
                                        3
(%i17) P[max]=float(Imax[1]*Umax[2]);
(%o17)                 P    = (I U = 566.5730641647529)
                        max
(%i18) R[L]=float(Umax[2]/Imax[1]);
                               U
(%o18)                   R  = (- = 4.979646071760522)
                          L    I
(%i19) 
Run Example
factorC(_f,_z):=block([s,n,m,fp,j],fp:1,/* This commented code was meant to use themore robust solver to_poly_solve, but I couldn't understand how to handle multiplicitiesss:args(to_poly_solve(_f,_z)),s:create_list(ss[k][1],k,1,length(ss)),*/s:solve(_f,_z),m:multiplicities,n:length(s),for j:1 thru n do  if lhs(s[j])#0  then fp:fp*(_z-(rhs(s[j])))^m[j], fp:fp*divide(_f,fp)[1],fp);
(%o1) factorC(_f, _z) := block([s, n, m, fp, j], fp : 1, s : solve(_f, _z), 
m : multiplicities, n : length(s), for j thru n 
                                             m
                                              j
do if lhs(s ) # 0 then fp : fp (_z - rhs(s ))  , fp : fp divide(_f, fp) , fp)
           j                              j                            1
(%i2) partfracC(_f,_z):=block([d,fd],d:denom(_f),fd:factorC(d,_z),partfrac(1/fd,_z));
(%o2) partfracC(_f, _z) := block([d, fd], d : denom(_f), fd : factorC(d, _z), 
                                                                       1
                                                              partfrac(--, _z))
                                                                       fd
(%i3) O:partfracC(1/(x^5-1)^4,x);
               4 %i %pi           2 %i %pi             2 %i %pi
               --------           --------           - --------
                  5                  5                    5
(%o3) (41992 %e         + 42160 %e         + 42076 %e
             4 %i %pi                  4 %i %pi         2 %i %pi            4 %i %pi            4 %i %pi
           - --------                  --------         --------          - --------            --------
                5                         5                5                   5                   5
 + 41824 %e           + 42328)/((625 %e         - 625 %e         + 1875 %e           - 1875) (%e         x
 - 1))
           4 %i %pi          2 %i %pi            2 %i %pi            4 %i %pi
           --------          --------          - --------          - --------
              5                 5                   5                   5
 + (1082 %e         + 1018 %e         + 1114 %e           + 1114 %e
                    2 %i %pi           2 %i %pi           4 %i %pi
                    --------         - --------         - --------
                       5                  5                  5
 + 1082)/((- 1250 %e         + 625 %e           + 625 %e          )
    4 %i %pi
    --------
       5           2
 (%e         x - 1) )
        4 %i %pi        2 %i %pi          2 %i %pi          4 %i %pi
        --------        --------        - --------        - --------
           5               5                 5                 5
   28 %e         + 20 %e         + 12 %e           + 20 %e           + 20
 + ----------------------------------------------------------------------
                   2 %i %pi         4 %i %pi     4 %i %pi
                 - --------         --------     --------
                      5                5            5           3
          (625 %e           - 625 %e        ) (%e         x - 1)
               4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
               --------         --------         - --------         - --------
                  5                5                  5                  5
 + 1/((- 125 %e         - 125 %e         - 125 %e           - 125 %e
           4 %i %pi                      4 %i %pi          2 %i %pi
           --------                      --------          --------
              5           4                 5                 5
 + 500) (%e         x - 1) ) - (- 1544 %e         - 1880 %e
          2 %i %pi           4 %i %pi
        - --------         - --------
             5                  5
 - 32 %e           - 368 %e           - 956)
            4 %i %pi          2 %i %pi            2 %i %pi            4 %i %pi     2 %i %pi
            --------          --------          - --------          - --------     --------
               5                 5                   5                   5            5
/((- 4375 %e         - 6875 %e         + 6875 %e           + 4375 %e          ) (%e         x - 1))
         4 %i %pi         2 %i %pi          2 %i %pi          4 %i %pi
         --------         --------        - --------        - --------
            5                5                 5                 5
 + (42 %e         + 170 %e         + 42 %e           - 54 %e           + 170)
           4 %i %pi          2 %i %pi           2 %i %pi            4 %i %pi
           --------          --------         - --------          - --------
              5                 5                  5                   5
/((- 625 %e         + 1875 %e         - 625 %e           - 2500 %e           + 1875)
    2 %i %pi
    --------
       5           2
 (%e         x - 1) )
        4 %i %pi       2 %i %pi          2 %i %pi         4 %i %pi
        --------       --------        - --------       - --------
           5              5                 5                5
 - (4 %e         - 4 %e         - 12 %e           + 4 %e           - 12)
         4 %i %pi           2 %i %pi           4 %i %pi           2 %i %pi
         --------         - --------         - --------           --------
            5                  5                  5                  5           3
/((625 %e         - 625 %e           + 625 %e           - 625) (%e         x - 1) )
       2 %i %pi           4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
     - --------           --------         --------         - --------         - --------
          5                  5                5                  5                  5
 + %e          /((- 125 %e         - 125 %e         + 500 %e           - 125 %e
           2 %i %pi
           --------
              5           4
 - 125) (%e         x - 1) )
            4 %i %pi           2 %i %pi             2 %i %pi
            --------           --------           - --------
               5                  5                    5
 - (41824 %e         + 42076 %e         + 42160 %e
             4 %i %pi                  4 %i %pi         2 %i %pi            4 %i %pi
           - --------                  --------         --------          - --------
                5                         5                5                   5
 + 41992 %e           + 42328)/((625 %e         - 625 %e         + 1875 %e           - 1875) (x
     4 %i %pi
     --------
        5
 - %e        ))
           4 %i %pi          2 %i %pi            2 %i %pi            4 %i %pi
           --------          --------          - --------          - --------
              5                 5                   5                   5
 + (1114 %e         + 1082 %e         + 1082 %e           + 1114 %e
                    2 %i %pi           2 %i %pi           4 %i %pi
                    --------         - --------         - --------
                       5                  5                  5
 + 1018)/((- 1250 %e         + 625 %e           + 625 %e          )
        4 %i %pi
        --------
           5     2
 (x - %e        ) )
        4 %i %pi        2 %i %pi          2 %i %pi          4 %i %pi
        --------        --------        - --------        - --------
           5               5                 5                 5
   20 %e         + 20 %e         + 20 %e           + 12 %e           + 28
 - ----------------------------------------------------------------------
                    2 %i %pi         4 %i %pi         4 %i %pi
                  - --------         --------         --------
                       5                5                5     3
           (625 %e           - 625 %e        ) (x - %e        )
       4 %i %pi           4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
     - --------           --------         --------         - --------         - --------
          5                  5                5                  5                  5
 + %e          /((- 125 %e         - 125 %e         - 125 %e           - 125 %e
               4 %i %pi
               --------
                  5     4
 + 500) (x - %e        ) )
         4 %i %pi         2 %i %pi            2 %i %pi           4 %i %pi
         --------         --------          - --------         - --------
            5                5                   5                  5
 - (32 %e         + 956 %e         + 1544 %e           + 368 %e
                    4 %i %pi          2 %i %pi            2 %i %pi            4 %i %pi
                    --------          --------          - --------          - --------
                       5                 5                   5                   5
 + 1880)/((- 4375 %e         - 6875 %e         + 6875 %e           + 4375 %e          ) (x
     2 %i %pi
     --------
        5
 - %e        ))
          4 %i %pi        2 %i %pi          2 %i %pi           4 %i %pi
          --------        --------        - --------         - --------
             5               5                 5                  5
 + (170 %e         + 42 %e         + 42 %e           + 170 %e           - 54)
           4 %i %pi          2 %i %pi           2 %i %pi            4 %i %pi
           --------          --------         - --------          - --------
              5                 5                  5                   5
/((- 625 %e         + 1875 %e         - 625 %e           - 2500 %e           + 1875)
        2 %i %pi
        --------
           5     2
 (x - %e        ) )
          4 %i %pi        2 %i %pi         2 %i %pi         4 %i %pi
          --------        --------       - --------       - --------
             5               5                5                5
 - (- 4 %e         + 12 %e         + 4 %e           - 4 %e           + 12)
         4 %i %pi           2 %i %pi           4 %i %pi               2 %i %pi
         --------         - --------         - --------               --------
            5                  5                  5                      5     3
/((625 %e         - 625 %e           + 625 %e           - 625) (x - %e        ) )
       4 %i %pi           4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
     - --------           --------         --------         - --------         - --------
          5                  5                5                  5                  5
 + %e          /((- 125 %e         - 125 %e         + 500 %e           - 125 %e
               2 %i %pi
               --------
                  5     4
 - 125) (x - %e        ) )
         4 %i %pi         2 %i %pi           2 %i %pi          4 %i %pi
         --------         --------         - --------        - --------
            5                5                  5                 5
   120 %e         + 120 %e         - 132 %e           + 36 %e           + 36
 - -------------------------------------------------------------------------
                4 %i %pi         2 %i %pi            2 %i %pi
                --------         --------          - --------
                   5                5                   5
         (625 %e         + 625 %e         - 1250 %e          ) (x - 1)
        4 %i %pi        2 %i %pi          2 %i %pi         4 %i %pi
        --------        --------        - --------       - --------
           5               5                 5                5
   36 %e         + 36 %e         - 60 %e           + 4 %e           + 4
 + --------------------------------------------------------------------
             4 %i %pi         2 %i %pi            2 %i %pi
             --------         --------          - --------
                5                5                   5             2
      (625 %e         + 625 %e         - 1250 %e          ) (x - 1)
        4 %i %pi          4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
        --------          --------         --------         - --------         - --------
           5                 5                5                  5                  5
 - (8 %e        )/((500 %e         - 125 %e         - 125 %e           - 125 %e
                      4 %i %pi
                      --------
               3         5
 - 125) (x - 1) ) + %e
         4 %i %pi         2 %i %pi           2 %i %pi           4 %i %pi
         --------         --------         - --------         - --------
            5                5                  5                  5
/((500 %e         - 125 %e         - 125 %e           - 125 %e           - 125)
        4
 (x - 1) )
(%i4) tex(O);
$${{41992\,e^{{{4\,i\,\pi}\over{5}}}+42160\,e^{{{2\,i\,\pi}\over{5}}}
 +42076\,e^ {- {{2\,i\,\pi}\over{5}} }+41824\,e^ {- {{4\,i\,\pi
 }\over{5}} }+42328}\over{\left(625\,e^{{{4\,i\,\pi}\over{5}}}-625\,e
 ^{{{2\,i\,\pi}\over{5}}}+1875\,e^ {- {{4\,i\,\pi}\over{5}} }-1875
 \right)\,\left(e^{{{4\,i\,\pi}\over{5}}}\,x-1\right)}}+{{1082\,e^{{{
 4\,i\,\pi}\over{5}}}+1018\,e^{{{2\,i\,\pi}\over{5}}}+1114\,e^ {- {{2
 \,i\,\pi}\over{5}} }+1114\,e^ {- {{4\,i\,\pi}\over{5}} }+1082}\over{
 \left(-1250\,e^{{{2\,i\,\pi}\over{5}}}+625\,e^ {- {{2\,i\,\pi}\over{
 5}} }+625\,e^ {- {{4\,i\,\pi}\over{5}} }\right)\,\left(e^{{{4\,i\,
 \pi}\over{5}}}\,x-1\right)^2}}+{{28\,e^{{{4\,i\,\pi}\over{5}}}+20\,e
 ^{{{2\,i\,\pi}\over{5}}}+12\,e^ {- {{2\,i\,\pi}\over{5}} }+20\,e
 ^ {- {{4\,i\,\pi}\over{5}} }+20}\over{\left(625\,e^ {- {{2\,i\,\pi
 }\over{5}} }-625\,e^{{{4\,i\,\pi}\over{5}}}\right)\,\left(e^{{{4\,i
 \,\pi}\over{5}}}\,x-1\right)^3}}+{{1}\over{\left(-125\,e^{{{4\,i\,
 \pi}\over{5}}}-125\,e^{{{2\,i\,\pi}\over{5}}}-125\,e^ {- {{2\,i\,\pi
 }\over{5}} }-125\,e^ {- {{4\,i\,\pi}\over{5}} }+500\right)\,\left(e
 ^{{{4\,i\,\pi}\over{5}}}\,x-1\right)^4}}-{{-1544\,e^{{{4\,i\,\pi
 }\over{5}}}-1880\,e^{{{2\,i\,\pi}\over{5}}}-32\,e^ {- {{2\,i\,\pi
 }\over{5}} }-368\,e^ {- {{4\,i\,\pi}\over{5}} }-956}\over{\left(-
 4375\,e^{{{4\,i\,\pi}\over{5}}}-6875\,e^{{{2\,i\,\pi}\over{5}}}+6875
 \,e^ {- {{2\,i\,\pi}\over{5}} }+4375\,e^ {- {{4\,i\,\pi}\over{5}} }
 \right)\,\left(e^{{{2\,i\,\pi}\over{5}}}\,x-1\right)}}+{{42\,e^{{{4
 \,i\,\pi}\over{5}}}+170\,e^{{{2\,i\,\pi}\over{5}}}+42\,e^ {- {{2\,i
 \,\pi}\over{5}} }-54\,e^ {- {{4\,i\,\pi}\over{5}} }+170}\over{\left(
 -625\,e^{{{4\,i\,\pi}\over{5}}}+1875\,e^{{{2\,i\,\pi}\over{5}}}-625
 \,e^ {- {{2\,i\,\pi}\over{5}} }-2500\,e^ {- {{4\,i\,\pi}\over{5}} }+
 1875\right)\,\left(e^{{{2\,i\,\pi}\over{5}}}\,x-1\right)^2}}-{{4\,e
 ^{{{4\,i\,\pi}\over{5}}}-4\,e^{{{2\,i\,\pi}\over{5}}}-12\,e^ {- {{2
 \,i\,\pi}\over{5}} }+4\,e^ {- {{4\,i\,\pi}\over{5}} }-12}\over{
 \left(625\,e^{{{4\,i\,\pi}\over{5}}}-625\,e^ {- {{2\,i\,\pi}\over{5
 }} }+625\,e^ {- {{4\,i\,\pi}\over{5}} }-625\right)\,\left(e^{{{2\,i
 \,\pi}\over{5}}}\,x-1\right)^3}}+{{e^ {- {{2\,i\,\pi}\over{5}} }
 }\over{\left(-125\,e^{{{4\,i\,\pi}\over{5}}}-125\,e^{{{2\,i\,\pi
 }\over{5}}}+500\,e^ {- {{2\,i\,\pi}\over{5}} }-125\,e^ {- {{4\,i\,
 \pi}\over{5}} }-125\right)\,\left(e^{{{2\,i\,\pi}\over{5}}}\,x-1
 \right)^4}}-{{41824\,e^{{{4\,i\,\pi}\over{5}}}+42076\,e^{{{2\,i\,\pi
 }\over{5}}}+42160\,e^ {- {{2\,i\,\pi}\over{5}} }+41992\,e^ {- {{4\,i
 \,\pi}\over{5}} }+42328}\over{\left(625\,e^{{{4\,i\,\pi}\over{5}}}-
 625\,e^{{{2\,i\,\pi}\over{5}}}+1875\,e^ {- {{4\,i\,\pi}\over{5}} }-
 1875\right)\,\left(x-e^{{{4\,i\,\pi}\over{5}}}\right)}}+{{1114\,e^{
 {{4\,i\,\pi}\over{5}}}+1082\,e^{{{2\,i\,\pi}\over{5}}}+1082\,e^ {- 
 {{2\,i\,\pi}\over{5}} }+1114\,e^ {- {{4\,i\,\pi}\over{5}} }+1018
 }\over{\left(-1250\,e^{{{2\,i\,\pi}\over{5}}}+625\,e^ {- {{2\,i\,\pi
 }\over{5}} }+625\,e^ {- {{4\,i\,\pi}\over{5}} }\right)\,\left(x-e^{
 {{4\,i\,\pi}\over{5}}}\right)^2}}-{{20\,e^{{{4\,i\,\pi}\over{5}}}+20
 \,e^{{{2\,i\,\pi}\over{5}}}+20\,e^ {- {{2\,i\,\pi}\over{5}} }+12\,e
 ^ {- {{4\,i\,\pi}\over{5}} }+28}\over{\left(625\,e^ {- {{2\,i\,\pi
 }\over{5}} }-625\,e^{{{4\,i\,\pi}\over{5}}}\right)\,\left(x-e^{{{4\,
 i\,\pi}\over{5}}}\right)^3}}+{{e^ {- {{4\,i\,\pi}\over{5}} }}\over{
 \left(-125\,e^{{{4\,i\,\pi}\over{5}}}-125\,e^{{{2\,i\,\pi}\over{5}}}
 -125\,e^ {- {{2\,i\,\pi}\over{5}} }-125\,e^ {- {{4\,i\,\pi}\over{5}}
  }+500\right)\,\left(x-e^{{{4\,i\,\pi}\over{5}}}\right)^4}}-{{32\,e
 ^{{{4\,i\,\pi}\over{5}}}+956\,e^{{{2\,i\,\pi}\over{5}}}+1544\,e^ {- 
 {{2\,i\,\pi}\over{5}} }+368\,e^ {- {{4\,i\,\pi}\over{5}} }+1880
 }\over{\left(-4375\,e^{{{4\,i\,\pi}\over{5}}}-6875\,e^{{{2\,i\,\pi
 }\over{5}}}+6875\,e^ {- {{2\,i\,\pi}\over{5}} }+4375\,e^ {- {{4\,i\,
 \pi}\over{5}} }\right)\,\left(x-e^{{{2\,i\,\pi}\over{5}}}\right)}}+
 {{170\,e^{{{4\,i\,\pi}\over{5}}}+42\,e^{{{2\,i\,\pi}\over{5}}}+42\,e
 ^ {- {{2\,i\,\pi}\over{5}} }+170\,e^ {- {{4\,i\,\pi}\over{5}} }-54
 }\over{\left(-625\,e^{{{4\,i\,\pi}\over{5}}}+1875\,e^{{{2\,i\,\pi
 }\over{5}}}-625\,e^ {- {{2\,i\,\pi}\over{5}} }-2500\,e^ {- {{4\,i\,
 \pi}\over{5}} }+1875\right)\,\left(x-e^{{{2\,i\,\pi}\over{5}}}
 \right)^2}}-{{-4\,e^{{{4\,i\,\pi}\over{5}}}+12\,e^{{{2\,i\,\pi
 }\over{5}}}+4\,e^ {- {{2\,i\,\pi}\over{5}} }-4\,e^ {- {{4\,i\,\pi
 }\over{5}} }+12}\over{\left(625\,e^{{{4\,i\,\pi}\over{5}}}-625\,e
 ^ {- {{2\,i\,\pi}\over{5}} }+625\,e^ {- {{4\,i\,\pi}\over{5}} }-625
 \right)\,\left(x-e^{{{2\,i\,\pi}\over{5}}}\right)^3}}+{{e^ {- {{4\,i
 \,\pi}\over{5}} }}\over{\left(-125\,e^{{{4\,i\,\pi}\over{5}}}-125\,e
 ^{{{2\,i\,\pi}\over{5}}}+500\,e^ {- {{2\,i\,\pi}\over{5}} }-125\,e
 ^ {- {{4\,i\,\pi}\over{5}} }-125\right)\,\left(x-e^{{{2\,i\,\pi
 }\over{5}}}\right)^4}}-{{120\,e^{{{4\,i\,\pi}\over{5}}}+120\,e^{{{2
 \,i\,\pi}\over{5}}}-132\,e^ {- {{2\,i\,\pi}\over{5}} }+36\,e^ {- {{4
 \,i\,\pi}\over{5}} }+36}\over{\left(625\,e^{{{4\,i\,\pi}\over{5}}}+
 625\,e^{{{2\,i\,\pi}\over{5}}}-1250\,e^ {- {{2\,i\,\pi}\over{5}} }
 \right)\,\left(x-1\right)}}+{{36\,e^{{{4\,i\,\pi}\over{5}}}+36\,e^{
 {{2\,i\,\pi}\over{5}}}-60\,e^ {- {{2\,i\,\pi}\over{5}} }+4\,e^ {- {{
 4\,i\,\pi}\over{5}} }+4}\over{\left(625\,e^{{{4\,i\,\pi}\over{5}}}+
 625\,e^{{{2\,i\,\pi}\over{5}}}-1250\,e^ {- {{2\,i\,\pi}\over{5}} }
 \right)\,\left(x-1\right)^2}}-{{8\,e^{{{4\,i\,\pi}\over{5}}}}\over{
 \left(500\,e^{{{4\,i\,\pi}\over{5}}}-125\,e^{{{2\,i\,\pi}\over{5}}}-
 125\,e^ {- {{2\,i\,\pi}\over{5}} }-125\,e^ {- {{4\,i\,\pi}\over{5}}
  }-125\right)\,\left(x-1\right)^3}}+{{e^{{{4\,i\,\pi}\over{5}}}
 }\over{\left(500\,e^{{{4\,i\,\pi}\over{5}}}-125\,e^{{{2\,i\,\pi
 }\over{5}}}-125\,e^ {- {{2\,i\,\pi}\over{5}} }-125\,e^ {- {{4\,i\,
 \pi}\over{5}} }-125\right)\,\left(x-1\right)^4}}$$
(%o4)                                false
(%i5) 
Run Example
g1: F_H+F_N2=F_N1;
(%o1)                          F_N2 + F_H = F_N1
(%i2) g2: F_N1*38=F_N2*100;
(%o2)                         38 F_N1 = 100 F_N2
(%i3) sol1:solve([g1,g2],[F_N1,F_N2]);
                                50 F_H         19 F_H
(%o3)                  [[F_N1 = ------, F_N2 = ------]]
                                  31             31
(%i4) F_N1:rhs(sol1[1][1]);
                                    50 F_H
(%o4)                               ------
                                      31
(%i5) F_N2:rhs(sol1[1][2]);
                                    19 F_H
(%o5)                               ------
                                      31
(%i6) F_R1:my*F_N1;
                                   50 my F_H
(%o6)                              ---------
                                      31
(%i7) F_R2:My*F_N2;
                                   19 My F_H
(%o7)                              ---------
                                      31
(%i8) 
[abs,acos,asin,atan2,expand,float,linsolve,matrix,pi,rhs,sqrt,time] [abs,acos,asin,expand,float,linsolve,matrix,pi,rhs,sqrt,time] [abs,append,args,block,return,rhs,sin] [abs,linsolve,log,plot2d,rhs] [acos,asin,atan,expand,float,linsolve,matrix,pi,rhs,sqrt,time] [acos,asin,atan2,expand,float,linsolve,matrix,pi,rhs,sqrt] [acos,cos,plot2d,rhs,sin,solve] [acos,expand,float,linsolve,matrix,pi,rhs] [acos,expand,float,linsolve,matrix,rhs,sqrt,time] [algebraic,carg,ev,expand,float,linsolve,numer,pi,rat,rhs,simp,true] [append,block,debugmode,print,return,rhs,true] [asin,atan,expand,float,linsolve,pi,rhs,sqrt,time] [block,depends,diff,exp,first,rhs,solve,subst] [block,expand,lhs,powerdisp,print,rhs] [cos,diff,float,ic2,ode2,plot2d,rhs,sqrt] [cos,diff,ic2,ode2,plot2d,rhs] [cos,numer,pi,rhs,sin,solve,sqrt] [denom,lhs,num,ratsubst,rhs,solve] [diff,disp,ic1,ode2,print,rhs] [diff,ev,float,fullratsimp,integrate,rhs,solve] [diff,exp,ic2,ode2,plot2d,rhs] [diff,exp,integrate,plot2d,psi,rhs,solve,sqrt] [diff,false,ic1,ode2,plot2d,ratprint,ratsimp,rhs] [diff,float,is,lambda,load,map,plot2d,rhs] [diff,ic1,ode2,plot2d,rhs] [diff,ic2,ode2,plot2d,rhs] [diff,integrate,numer,rhs,solve] [diff,ode2,plot2d,rhs] [diff,rhs,solve,subst] [diff,rhs,solve] [ev,integrate,rhs,sin,taylor] [ev,ratsimp,rhs,solve] [ev,rhs,solve] [expand,factorsum,rhs,solve] [expand,float,linsolve,matrix,rhs,sqrt,time] [expand,float,linsolve,matrix,rhs,time] [expand,float,linsolve,rhs,time] [expand,linsolve,numer,rhs,sqrt,tan] [factor,kill,length,makelist,map,plot2d,rhs,solve,sum] [linsolve,rhs] [numer,pi,rhs,solve] [numer,rhs,solve] [plot2d,ratsimp,rhs,solve] [plot2d,rhs,solve,sqrt,tan] [plot2d,rhs,solve] [ratsimp,rhs,solve] [rhs,solve,sqrt] [rhs,solve,subst] [rhs,solve] [rhs]

Related Help

Help for Rhs