Sponsored links: Algebra eBooks
 

Related

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([1,...

Calculate

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([1,...

Calculate

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([13...

Calculate

reverse-rreduce

rreduce(f,reverse([1,...

Calculate

reverse

reverse([1,2,3]);

Calculate

reverse-sort

eq1:[10,2,55,4,5];

eq2:[5,6,7,8,9];

eq1: sort(eq1);

Calculate

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([13...

Calculate

reverse-sort

eq1:[10,2,55,4,5];

eq2:[5,6,7,8,9];

eq1: sort(eq1);

Calculate

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([1,...

Calculate

reverse-rreduce

f(x,y):=x+10*y;

rreduce(f,reverse([13...

Calculate

reverse

Run Example
(%i1)umrechnung:[];
(%o1)                                 []
(%i2) basis:8;
(%o2)                                  8
(%i3) x[0]:119.0625;
(%o3)                              119.0625
(%i4) x[n]:=block(q:[floor(x[n-1]/basis),mod(x[n-1],basis)],umrechnung:append(umrechnung,[q[2]]),x[n-1]: q[1]);
                             x
                              n - 1
(%o4) x  := block(q : [floor(------), mod(x     , basis)], 
       n                     basis         n - 1
                            umrechnung : append(umrechnung, [q ]), x      : q )
                                                              2     n - 1    1
(%i5) makelist(x[i],i,1,4);
(%o5)                            [14, 1, 0, 0]
(%i6) hexzahl:reverse(umrechnung);
(%o6)                          [0, 1, 6, 7.0625]
(%i7) konverter(x):=if x=10 then "A"else if x=11 then "B"else if x=12 then "C"else if x=13then "D"else if x=14 then "E"else if x=15 then "F"else x;
(%o7) konverter(x) := if x = 10 then "A"
 else (if x = 11 then "B" else (if x = 12 then "C"
 else (if x = 13 then "D" else (if x = 14 then "E"
 else (if x = 15 then "F" else x)))))
(%i8) map(konverter,hexzahl);
(%o8)                          [0, 1, 6, 7.0625]
(%i9) var1:hexzahl[1]*1000+hexzahl[2]*100+hexzahl[3]*10+hexzahl[4];
(%o9)                              167.0625
(%i10) 
Run Example
:lisp (defun walk-tree (fun tree)  (subst-if t            (constantly nil)            tree            :key fun));

WALK-TREE
(%i1) :lisp (defun intersperse (obj ls)  (do ((ls1 (reverse (cdr ls)) (cdr ls1))       (ls2 nil (cons obj (cons (car ls1) ls2))))      ((not ls1) (cons (car ls) ls2))));

INTERSPERSE
(%i1) :lisp (defun pre2in (expr)        (cond ((atom expr) expr)              ((listp expr) (intersperse (car expr) (cdr expr)))              (t (pre2in (cdr expr)))));

PRE2IN
(%i1) :lisp (walk-tree 'print '(* 2 2 2));

(* 2 2 2) 
* 
(2 2 2) 
2 
(2 2) 
2 
(2) 
2 
NIL 
(* 2 2 2)
(%i1) 
Run Example
"*"/* Eine Polynomfunktion aus Punkten */;
(%o1)                                  *
(%i2) "*"/* Eingabe der Punkte */;
(%o2)                                  *
(%i3) Punkt:[[-4,-5],[-1,-8],[3,0],[6,5],[8,-2]];
(%o3)         [[- 4, - 5], [- 1, - 8], [3, 0], [6, 5], [8, - 2]]
(%i4) "*"/* Zerlegung in Koordinaten */;
(%o4)                                  *
(%i5) n:length(Punkt) /* Zahl der Punkte */;
(%o5)                                  5
(%i6) X:makelist(Punkt[i][1],i,1,n);
(%o6)                         [- 4, - 1, 3, 6, 8]
(%i7) Y:makelist(Punkt[i][2],i,1,n);
(%o7)                        [- 5, - 8, 0, 5, - 2]
(%i8) potenzen:reverse(makelist(x^(i-1),i,1,n));
                                4   3   2
(%o8)                         [x , x , x , x, 1]
(%i9) variable:makelist(a[i],i,1,n);
(%o9)                        [a , a , a , a , a ]
                               1   2   3   4   5
(%i10) T:ev(potenzen.variable);
                           4       3       2
(%o10)                 a  x  + a  x  + a  x  + a  x + a
                        1       2       3       4      5
(%i11) f(x):=''T;
                               4       3       2
(%o11)             f(x) := a  x  + a  x  + a  x  + a  x + a
                            1       2       3       4      5
(%i12) gleichungen:makelist((Y[i]=ev(T,x=X[i])),i,1,n);
(%o12) [- 5 = a  - 4 a  + 16 a  - 64 a  + 256 a , 
               5      4       3       2        1
- 8 = a  - a  + a  - a  + a , 0 = a  + 3 a  + 9 a  + 27 a  + 81 a , 
       5    4    3    2    1       5      4      3       2       1
5 = a  + 6 a  + 36 a  + 216 a  + 1296 a , 
     5      4       3        2         1
- 2 = a  + 8 a  + 64 a  + 512 a  + 4096 a ]
       5      4       3        2         1
(%i13) loesungen:solve(gleichungen,variable);
                   13          17        1139       583         248
(%o13)   [[a  = - ----, a  = - ---, a  = ----, a  = ---, a  = - ---]]
            1     2520   2     630   3   2520   4   420   5     35
(%i14) T:T,loesungen;
                          4       3         2
                      13 x    17 x    1139 x    583 x   248
(%o14)              - ----- - ----- + ------- + ----- - ---
                      2520     630     2520      420    35
(%i15) f(x):=''T;
                              4       3         2
                          13 x    17 x    1139 x    583 x   248
(%o15)          f(x) := - ----- - ----- + ------- + ----- - ---
                          2520     630     2520      420    35
(%i16) Nullstellen:realroots(f(x));
                      332918121                      258065927
(%o16)         [x = - ---------, x = - 6, x = 3, x = ---------]
                      33554432                       33554432
(%i17) plot2d([f(x)],[x,-10,10]);
plotplot2d([f(x)],[x,-10,10]);
[append,block,cons,delete,do,emptyp,first,float,lambda,last,listp,load,makelist,numberp,ratprint,rest,return,reverse] [append,block,cons,delete,do,emptyp,first,float,lambda,last,listp,load,map,ratprint,rest,return,reverse] [append,block,delete,flatten,length,makelist,map,reverse] [append,block,draw,draw2d,explicit,float,floor,lambda,load,makelist,map,points,reverse,sin,third,true] [append,block,floor,makelist,map,mod,reverse] [append,block,floor,makelist,mod,reverse] [append,block,length,makelist,mod,reverse] [append,cons,if,let,reverse] [append,eval,false,if,labels,lambda,quotient,rest,reverse,sum,true] [append,makelist,map,numer,reverse] [apply,block,ceiling,cons,do,fpprec,rationalize,ratnump,reverse,sin] [ascii,expand,length,load,makelist,reverse] [ascii,expand,length,makelist,matrix,reverse] [ascii,expand,length,makelist,reverse] [ascii,length,makelist,reverse] [block,do,emptyp,first,if,lambda,load,not,rest,reverse,split,while] [block,do,emptyp,first,if,lambda,not,rest,reverse,split,while] [block,do,emptyp,first,if,lambda,not,rest,reverse,while] [cartesian_product,listify,map,product,reverse,transpose] [cartesian_product,listify,map,product,reverse,und] [charlist,display,floor,length,makelist,primep,reverse,string,sum] [charlist,display,floor,length,makelist,reverse,string] [cons,if,lambda,length,rest,reverse] [do,if,lambda,let,not,or,reverse] [do,labels,reverse] [do,reverse] [eigenvalues,float,matrix,realpart,reverse,sort,sqrt,transpose] [eval,false,if,labels,lambda,quotient,rest,reverse,sum,true] [eval,if,labels,lambda,rest,reverse,sum] [floor,length,makelist,plot2d,realroots,reverse,solve,sort] [floor,makelist,reverse,sqrt] [if,labels,lambda,rest,reverse,sum] [if,reverse] [lambda,makelist,map,reverse,setify] [length,makelist,plot2d,reverse,solve] [length,makelist,reverse,solve] [length,makelist,reverse,transpose] [length,makelist,reverse] [makelist,reverse] [matrix,reverse] [reverse,rreduce] [reverse,sort] [reverse]

Related Help

Help for Reverse