Sponsored links: Algebra eBooks
 

Related

remfunction-remvalue

remvalue(all);

remfunction(all);

G: (Ki*N1*N2) / ((((s...

Calculate

remfunction

? remfunction;

Calculate

remfunction-remvalue

remvalue(all);

remfunction(all);

G: (Ki*N1*N2) / ((((s...

Calculate

remfunction

? remfunction;

Calculate

remfunction

Run Example
(%i1)remvalue(all);
(%o1)                                 []
(%i2) remfunction(all);
(%o2)                                 []
(%i3) e1: T(s) = B1*W1(s) + J*s*W1(s) + (N1/N2)*(2*Jc*s*W(s) + B2*W(s));
                  (W(s) B2 + 2 Jc s W(s)) N1
(%o3)      T(s) = -------------------------- + s W1(s) J + W1(s) B1
                              N2
(%i4) e2: N1*W1(s) = N2*W(s);
(%o4)                         W1(s) N1 = W(s) N2
(%i5) e3: I1(s) = I2(s) + I3(s);
(%o5)                        I1(s) = I3(s) + I2(s)
(%i6) e4: Vr(s) = R*I1(s) + I3(s)/(C*s);
                                              I3(s)
(%o6)                       Vr(s) = I1(s) R + -----
                                               s C
(%i7) e5: I3(s)/(C*s) = L*s*I2(s) + Ve(s);
                           I3(s)
(%o7)                      ----- = s I2(s) L + Ve(s)
                            s C
(%i8) e6: T(s) = Ki*I2(s);
(%o8)                           T(s) = Ki I2(s)
(%i9) e7: Ve(s) = Ke*W1(s);
(%o9)                          Ve(s) = Ke W1(s)
(%i10) fullratsimp(solve([e1,e2,e3,e4,e5,e6,e7], [I1(s),I2(s),I3(s),Ve(s),W(s),W1(s),T(s)]),Vr(s))/Vr(s);
         I1(s)       3        2                                   2
(%o10) [[----- = (((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
         Vr(s)
      2            3                       2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 )
      3        2                                   2
/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2   I2(s)                 2                   2
 + (s B2 + 2 Jc s ) L N1 ), ----- = ((s J + B1) N2  + (B2 + 2 Jc s) N1 )
                            Vr(s)
      3        2                                   2
/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2   I3(s)       3        2                        2
 + (s B2 + 2 Jc s ) L N1 ), ----- = (((s  C J + s  B1 C) L + Ke Ki s C) N2
                            Vr(s)
     2            3        2       3        2
 + (s  B2 + 2 Jc s ) C L N1 )/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1)
   2      2            3                       2
 N2  + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R
      2                        2                 2      2
 + ((s  J + s B1) L + Ke Ki) N2  + (s B2 + 2 Jc s ) L N1 ), 
Ve(s)            2       3        2                                   2
----- = (Ke Ki N2 )/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
Vr(s)
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2   W(s)
 + (s B2 + 2 Jc s ) L N1 ), ----- = (Ki N1 N2)
                            Vr(s)
      3        2                                   2
/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2   W1(s)         2
 + (s B2 + 2 Jc s ) L N1 ), ----- = (Ki N2 )
                            Vr(s)
      3        2                                   2
/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2   T(s)                        2
 + (s B2 + 2 Jc s ) L N1 ), ----- = ((Ki s J + Ki B1) N2
                            Vr(s)
                         2       3        2                                   2
 + (Ki B2 + 2 Jc Ki s) N1 )/((((s  C J + s  B1 C) L + s J + Ke Ki s C + B1) N2
      2            3                       2         2                        2
 + ((s  B2 + 2 Jc s ) C L + B2 + 2 Jc s) N1 ) R + ((s  J + s B1) L + Ke Ki) N2
                 2      2
 + (s B2 + 2 Jc s ) L N1 )]]
(%i11) 
Run Example
remvalue(all);
(%o1)                                 []
(%i2) remfunction(all);
(%o2)                                 []
(%i3) e1: T(s) = B1*W1(s) + J*s*W1(s) + (N1/N2)*(2*Jc*s*W(s) + B2*W(s));
                  (W(s) B2 + 2 Jc s W(s)) N1
(%o3)      T(s) = -------------------------- + s W1(s) J + W1(s) B1
                              N2
(%i4) e2: N1*W1(s) = N2*W(s);
(%o4)                         W1(s) N1 = W(s) N2
(%i5) fullratsimp(solve([e1,e2,e3,e4,e5,e6,e7], [I1(s),I2(s),I3(s),Ve(s),W(s),W1(s),T(s)]),Vr(s))/Vr(s);
(%o5)                                 []
(%i6) 
Run Example
? remfunction;

 -- Function: remfunction (<f_1>, ..., <f_n>)
 -- Function: remfunction (all)
     Unbinds the function definitions of the symbols <f_1>, ..., <f_n>.
     The arguments may be the names of ordinary functions (created by
     `:=' or `define') or macro functions (created by `::=').

     `remfunction (all)' unbinds all function definitions.

     `remfunction' quotes its arguments.

     `remfunction' returns a list of the symbols for which the function
     definition was unbound.  `false' is returned in place of any
     symbol for which there is no function definition.

     `remfunction' does not apply to array functions or subscripted
     functions.  `remarray' applies to those types of functions.


(%o1)                                true
(%i2) 

Related Help

Help for Remfunction