### Related

##### ratsimpexpons-true

ratsimpexpons: true;

ratsimp(2^(5/2));

Calculate

? ratsimpexpons;

Calculate

##### ratsimpexpons

? ratsimpexpons ;

Calculate

##### ratsimpexpons-true

ratsimpexpons: true;

ratsimp(2^(5/2));

Calculate

? ratsimpexpons;

Calculate

##### ratsimpexpons

? ratsimpexpons ;

Calculate

### ratsimpexpons

Run Example
```(%i1)eq:(x^2-17*x+1)^(x^2-34*x+1)=1;
2
2            x  - 34 x + 1
(%o1)                  (x  - 17 x + 1)              = 1
(%i2) ratdisp:false;
(%o2)                                false
(%i3) ratsimpexpons:false;
(%o3)                                false
(%i4) rat(lhs(eq)), ratsimp;
2
2            x  - 34 x + 1
(%o4)                    (x  - 17 x + 1)
(%i5) ```
Run Example
```x(t) := exp((3+sqrt(5))/4*t) + exp((3-sqrt(5))/4*t);
3 + sqrt(5)          3 - sqrt(5)
(%o1)           x(t) := exp(----------- t) + exp(----------- t)
4                    4
(%i2) y(t) := (sqrt(5)-1)*exp((3+sqrt(5))/4*t) - (sqrt(5)+1)*exp((3-sqrt(5))/4*t);
3 + sqrt(5)
(%o2) y(t) := (sqrt(5) - 1) exp(----------- t)
4
3 - sqrt(5)
- (sqrt(5) + 1) exp(----------- t)
4
(%i3) diff(x(t),t);
(sqrt(5) + 3) t                   (3 - sqrt(5)) t
---------------                   ---------------
4                                 4
(sqrt(5) + 3) %e                  (3 - sqrt(5)) %e
(%o3)  ------------------------------- + -------------------------------
4                                 4
(%i4) diff(y(t),t), ratsimpexpons: true;
(sqrt(5) + 3) t
---------------
4
(sqrt(5) - 1) (sqrt(5) + 3) %e
(%o4) ---------------------------------------------
4
(sqrt(5) - 3) t
- ---------------
4
(sqrt(5) - 3) (sqrt(5) + 1) %e
+ -----------------------------------------------
4
(%i5) ratsimp(%,t);
(%o5)             ```
Run Example
```eq:(x^2-17*x+1)^(x^2-34*x+1)=1;
2
2            x  - 34 x + 1
(%o1)                  (x  - 17 x + 1)              = 1
(%i2) ratdisp:false;
(%o2)                                false
(%i3) ratsimpexpons:true;
(%o3)                                true
(%i4) ratexpand(lhs(eq));
2                               2
2   2            x  - 34 x          2            x  - 34 x
(%o4) x  (x  - 17 x + 1)          - 17 x (x  - 17 x + 1)
2
2            x  - 34 x
+ (x  - 17 x + 1)
(%i5) rat(lhs(eq));
2
2               2            x
(x  - 17 x + 1) (x  - 17 x + 1)
(%o5)/R/               ---------------------------------
2            x 34
((x  - 17 x + 1) )
(%i6) polydecomp(lhs(eq), x);
2                        2                   2
2   2            x           2            x      2            x
x  (x  - 17 x + 1)   - 17 x (x  - 17 x + 1)   + (x  - 17 x + 1)
(%o6) [-----------------------------------------------------------------]
2            34 x
(x  - 17 x + 1)
(%i7) taylor(lhs(eq), x, 0, 3);
2         3
(%o7)/T/              1 - 17 x + 579 x  - 4964 x  + . . .
(%i8) ```

### Related Help

Help for Ratsimpexpons