### Related

? pui;

Calculate

##### pui-ratsimp

pui;

pui ([3, a, b], u*x*...

ratsimp (%);

Calculate

? pui;

Calculate

##### pui-ratsimp

pui;

pui ([3, a, b], u*x*...

ratsimp (%);

Calculate

### pui

Run Example
```(%i1)multi_pui ([[2, p1, p2], [2, t1, t2]], a*x + a^2 + x^3,                [[x, y], [a, b]]);
resolvante
generale

NOTE: To compile the system do
define: warning: redefining the built-in function resolvante_produit_sym
define: warning: redefining the built-in function resolvante_unitaire
define: warning: redefining the built-in function resolvante_alternee1
define: warning: redefining the built-in function resolvante_klein
define: warning: redefining the built-in function resolvante_klein3
define: warning: redefining the built-in function resolvante_vierer
define: warning: redefining the built-in function resolvante_diedrale
define: warning: redefining the built-in function resolvante_bipartite
3
3 p1 p2   p1
(%o1)                     t2 + p1 t1 + ------- - ---
2       2
(%i2) ```
Run Example
```? ele2pui;

-- Function: ele2pui (<m>, <L>)
goes from the elementary symmetric functions to the complete
functions.  Similar to `comp2ele' and `comp2pui'.

Other functions for changing bases: `comp2ele'.

(%o1)                                true
(%i2) ```
Run Example
```? comp2pui;

-- Function: comp2pui (<n>, <L>)
implements passing from the complete symmetric functions given in
the list <L> to the elementary symmetric functions from 0 to <n>.
If the list <L> contains fewer than <n+1> elements, it will be
completed with formal values of the type <h1>, <h2>, etc. If the
first element of the list <L> exists, it specifies the size of the
alphabet, otherwise the size is set to <n>.

(%i1) comp2pui (3, [4, g]);
2                    2
(%o1)    [4, g, 2 h2 - g , 3 h3 - g h2 + g (g  - 2 h2)]

(%o1)                                true
(%i2) ```

Help for Pui