Sponsored links: Algebra eBooks
 

Related

polynomialp-sqrt

polynomialp(sqrt(2*x+...

Calculate

polynomialp

polynomialp ((x + 1)*...

polynomialp ((x + 1)...

polynomialp ((x + 1)...

Calculate

polynomialp

? polynomialp;

Calculate

polynomialp-sqrt

polynomialp(sqrt(2*x+...

Calculate

polynomialp

polynomialp ((x + 1)*...

polynomialp ((x + 1)...

polynomialp ((x + 1)...

Calculate

polynomialp

? polynomialp;

Calculate

polynomialp

Run Example
(%i1)polyp(expr,var):=polynomialp(expr,[var],buildq([bb:var],lambda([aa],freeof(bb,aa))));
(%o1) polyp(expr, var) := polynomialp(expr, [var], 
                              buildq([bb : var], lambda([aa], freeof(bb, aa))))
(%i2) polyp(a*x+b(x),x);
(%o2)                                false
(%i3) 
Run Example
eq1: expand((2*x+y^2-3*z)*(x+4*y-1));
                                    3      2    2              2
(%o1)   - 12 y z - 3 x z + 3 z + 4 y  + x y  - y  + 8 x y + 2 x  - 2 x
(%i2) solve(eq1,[x,y,z]);
                                 2
                              %r2  + 2 %r1                   %r3 - 1
(%o2) [[x = %r1, y = %r2, z = ------------], [x = %r3, y = - -------, z = %r4]]
                                   3                            4
(%i3) eq2: expand((x^3-z)*(2*x-1));
                                             4    3
(%o3)                       - 2 x z + z + 2 x  - x
(%i4) solve([eq1,eq2],[x,y,z]);
                                 3                  3
(%o4) [[x = %r5, y = - sqrt(3 %r5  - 2 %r5), z = %r5 ], 
                        3                  3
[x = %r6, y = sqrt(3 %r6  - 2 %r6), z = %r6 ], 
                                                            2
                %r7 - 1         3        1               %r8  + 1
[x = %r7, y = - -------, z = %r7 ], [x = -, y = %r8, z = --------], 
                   4                     2                  3
     1      1
[x = -, y = -, z = %r9]]
     2      8
(%i5) polynomialp((a+sqrt(b))*x^2+1,[x],mapatom);
(%o5)                                false
(%i6) 
Run Example
generalcoeffp(cfs):=block(	[lcfs],	if mapatom(cfs)=true then return(true),	lcfs: ratexpand(cfs),	if op(lcfs)#"+" then return(true),	return(true));
(%o1) generalcoeffp(cfs) := block([lcfs], 
if mapatom(cfs) = true then return(true), lcfs : ratexpand(cfs), 
if op(lcfs) # "+" then return(true), return(true))
(%i2) polynomialp(sqrt(2*x+1),[x],generalcoeffp);
(%o2)                                true
(%i3) 

Related Help

Help for Polynomialp