### Related

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,y,z);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(y,z,x);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(y,x,z);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

? orderless;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(z,x);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

? orderless;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(y,z,x);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

##### orderless-unorder

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,y,z);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(z,y,x);

p;

Calculate

##### orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,z,y);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

### orderless

Run Example
```(%i1)p:2*y*z^2+x*z^3+2*x*z^4;
4      3        2
(%o1)                       2 x z  + x z  + 2 y z
(%i2) collectterms(p,x);
4    3         2
(%o2)                       x (2 z  + z ) + 2 y z
(%i3) orderless(z,y,x);
(%o3)                                done
(%i4) p:2*y*z^2+x*z^3+2*x*z^4;
4      3        2
(%o4)                       2 z  x + z  x + 2 z  y
(%i5) unorder();
(%o5)                              [z, y, x]
(%i6) ordergreat(x,z,y);
(%o6)                                done
(%i7) p:2*y*z^2+x*z^3+2*x*z^4;
4      3          2
(%o7)                       2 z  x + z  x + 2 y z
(%i8) unorder();
(%o8)                              [y, z, x]
(%i9) ordergreat(z,x,y);
(%o9)                                done
(%i10) p:2*y*z^2+x*z^3+2*x*z^4;
4      3        2
(%o10)                      2 x z  + x z  + 2 y z
(%i11) unorder();
(%o11)                             [y, x, z]
(%i12) ```
Run Example
```? orderless;

-- Function: orderless (<v_1>, ..., <v_n>)
`ordergreat' changes the canonical ordering of Maxima expressions
such that <v_1> succeeds <v_2> succeeds ...  succeeds <v_n>, and
<v_n> succeeds any other symbol not mentioned as an argument.

`orderless' changes the canonical ordering of Maxima expressions
such that <v_1> precedes <v_2> precedes ...  precedes <v_n>, and
<v_n> precedes any other variable not mentioned as an argument.

The order established by `ordergreat' and `orderless' is dissolved
by `unorder'.  `ordergreat' and `orderless' can be called only
once each, unless `unorder' is called; only the last call to
`ordergreat' and `orderless' has any effect.

There are also some inexact matches for `orderless'.
Try `?? orderless' to see them.

(%o1)                                true
(%i2) ```
Run Example
```p:2*y*z^2+x*z^3+2*x*z^4;
4      3        2
(%o1)                       2 x z  + x z  + 2 y z
(%i2) orderless(y,z,x);
(%o2)                                done
(%i3) p:2*y*z^2+x*z^3+2*x*z^4;
4      3          2
(%o3)                       2 z  x + z  x + 2 y z
(%i4) ```

### Related Help

Help for Orderless