### Related

##### orbit

orbit (x,ay [x, y]);

orbit (2*x + x^2, [x...

Calculate

##### orbit

orbit (a*x + b*y, [x,...

orbit (2*x + x^2, [x...

Calculate

? orbit;

Calculate

##### orbit

orbit (x,ay [x, y]);

orbit (2*x + x^2, [x...

Calculate

##### orbit

orbit (a*x + b*y, [x,...

orbit (2*x + x^2, [x...

Calculate

? orbit;

Calculate

### orbit

Run Example
(%i1)orbit(x0,a,N):=block( [x,xorbit], x:x0, xorbit:[[0,x]], for k thru N do (x:x*exp(r*(1-x)), xorbit:append(xorbit,[[k,x]])),xorbit);
define: warning: redefining the built-in function orbit
(%o1) orbit(x0, a, N) := block([x, xorbit], x : x0, xorbit : [[0, x]],
for k thru N do (x : x exp(r (1 - x)), xorbit : append(xorbit, [[k, x]])),
xorbit)
(%i2) 1.5;
(%o2)                                 1.5
(%i3)
Run Example
orbit(x0,a,N):=block( [x,xorbit], x:x0, xorbit:[[0,x]], for k thru N do (x:x*exp(r*(1-x)), xorbit:append(xorbit,[[k,x]])),xorbit);
define: warning: redefining the built-in function orbit
(%o1) orbit(x0, a, N) := block([x, xorbit], x : x0, xorbit : [[0, x]],
for k thru N do (x : x exp(r (1 - x)), xorbit : append(xorbit, [[k, x]])),
xorbit)
(%i2)
Run Example
? multi_orbit;

-- Function: multi_orbit (<P>, [<lvar_1>, <lvar_2>,..., <lvar_p>])
<P> is a polynomial in the set of variables contained in the lists
<lvar_1>, <lvar_2>, ..., <lvar_p>. This function returns the orbit
of the polynomial <P> under the action of the product of the
symmetric groups of the sets of variables represented in these <p>
lists.

(%i1) multi_orbit (a*x + b*y, [[x, y], [a, b]]);
(%o1)                [b y + a x, a y + b x]
(%i2) multi_orbit (x + y + 2*a, [[x, y], [a, b, c]]);
(%o2)        [y + x + 2 c, y + x + 2 b, y + x + 2 a]
Also see: `orbit' for the action of a single symmetric group.

(%o1)                                true
(%i2)

Help for Orbit