Sponsored links: Algebra eBooks
 

Related

noundisp-true

noundisp: true;

x: 2;

y: '('x + 1);

Calculate

noundisp-true

noundisp: true;

x: 2;

y: 'x + 1;

Calculate

noundisp-true

noundisp: true;

x: 2;

y: '('x + 1);

Calculate

noundisp-true

noundisp: true;

x: 2;

y: 'x + 1;

Calculate

noundisp

Run Example
(%i1)noundisp : true;
(%o1)                                true
(%i2) circ:  x^2+y^2=1;
                                   2    2
(%o2)                             y  + x  = 1
(%i3) half(x) := rhs(solve(circ, y)[2])*2;
(%o3)                  half(x) := rhs(solve(circ, y) ) 2
                                                    2
(%i4) tex(half(x));
$$2\,\sqrt{1-x^2}$$
(%o4)                                false
(%i5) penum(x) := ''(ratsimp(''(integrate(half(x), x))));
                                                       2
(%o5)                penum(x) := asin(x) + x sqrt(1 - x )
(%i6) dispfun(penum);
                                                       2
(%t6)                penum(x) := asin(x) + x sqrt(1 - x )

(%o6)                                [%t6]
(%i7) print(penum(x));
                      2
asin(x) + x sqrt(1 - x ) 
                                                 2
(%o7)                      asin(x) + x sqrt(1 - x )
(%i8) pgrad(x) := 0.5 + (ev(penum(2*x-1), nouns) / (%pi / 2));
                                    ev(penum(2 x - 1), nouns)
(%o8)             pgrad(x) := 0.5 + -------------------------
                                               %pi
                                               ---
                                                2
(%i9) tex(pgrad(x));
$${{2\,\left(\arcsin \left(2\,x-1\right)+\left(2\,x-1\right)\,\sqrt{1
 -\left(2\,x-1\right)^2}\right)}\over{\pi}}+0.5$$
(%o9)                                false
(%i10) plot2d(penum(x), [x, -1, 1]);
plotplot2d(penum(x), [x, -1, 1]);plot2d(''pgrad(x), [x, 0, 1]);
plotplot2d(
Run Example
noundisp : true;
(%o1)                                true
(%i2) circ:  x^2+y^2=1;
                                   2    2
(%o2)                             y  + x  = 1
(%i3) half(x) := rhs(solve(circ, y)[2])*2;
(%o3)                  half(x) := rhs(solve(circ, y) ) 2
                                                    2
(%i4) tex(half(x));
$$2\,\sqrt{1-x^2}$$
(%o4)                                false
(%i5) penum(x) := ''ratsimp(''(integrate(half(x), x)));
                                                            2
                                      asin(x)   x sqrt(1 - x )
(%o5)          penum(x) := ratsimp(2 (------- + --------------))
                                         2            2
(%i6) pgrad(x) := 0.5 + (penum(2*x-1) / %pi);
                                         penum(2 x - 1)
(%o6)                  pgrad(x) := 0.5 + --------------
                                              %pi
(%i7) tex(pgrad(x));
$${{\arcsin \left(2\,x-1\right)+\left(2\,x-1\right)\,\sqrt{4\,x-4\,x^
 2}}\over{\pi}}+0.5$$
(%o7)                                false
(%i8) plot2d(penum(x), [x, -1, 1]);
plotplot2d(penum(x), [x, -1, 1]);plot2d(''(pgrad(x)), [x, 0, 1]);
plotplot2d(
Run Example
? noundisp;

 -- Option variable: noundisp
     Default value: `false'

     When `noundisp' is `true', nouns display with a single quote.
     This switch is always `true' when displaying function definitions.


(%o1)                                true
(%i2) 

Related Help

Help for Noundisp