### Related

mapatom(a[1]);

Calculate

##### mapatom-sqrt

mapatom(sqrt(a));

Calculate

mapatom(2);

mapatom(x);

mapatom(-2);

Calculate

mapatom(2);

mapatom(x);

mapatom(-2);

Calculate

##### mapatom-sqrt

mapatom(sqrt(2));

Calculate

mapatom(2);

mapatom(x);

mapatom(-2);

Calculate

mapatom(a*b);

Calculate

mapatom(-2);

mapatom(-x);

Calculate

mapatom(1/2);

Calculate

##### mapatom-sqrt

mapatom(sqrt(a));

Calculate

### mapatom

Run Example
(%i1)eq1: expand((2*x+y^2-3*z)*(x+4*y-1));
3      2    2              2
(%o1)   - 12 y z - 3 x z + 3 z + 4 y  + x y  - y  + 8 x y + 2 x  - 2 x
(%i2) solve(eq1,[x,y,z]);
2
%r2  + 2 %r1                   %r3 - 1
(%o2) [[x = %r1, y = %r2, z = ------------], [x = %r3, y = - -------, z = %r4]]
3                            4
(%i3) eq2: expand((x^3-z)*(2*x-1));
4    3
(%o3)                       - 2 x z + z + 2 x  - x
(%i4) solve([eq1,eq2],[x,y,z]);
3                  3
(%o4) [[x = %r5, y = - sqrt(3 %r5  - 2 %r5), z = %r5 ],
3                  3
[x = %r6, y = sqrt(3 %r6  - 2 %r6), z = %r6 ],
2
%r7 - 1         3        1               %r8  + 1
[x = %r7, y = - -------, z = %r7 ], [x = -, y = %r8, z = --------],
4                     2                  3
1      1
[x = -, y = -, z = %r9]]
2      8
(%i5) polynomialp((a+sqrt(b))*x^2+1,[x],mapatom);
(%o5)                                false
(%i6)
Run Example
? mapatom;

-- Function: mapatom (<expr>)
Returns `true' if and only if <expr> is treated by the mapping
routines as an atom.  "Mapatoms" are atoms, numbers (including
rational numbers), and subscripted variables.

(%o1)                                true
(%i2)
Run Example
polynomialp(sqrt(2*x+1),[x]);
(%o1)                                false
(%i2) mapatom(sqrt(b));
(%o2)                                false
(%i3)

Help for Mapatom