### Related

##### makelist-map-showtime-true

val: 50;

slist: makelist(s[ii]...

tlist: makelist(t[ii]...

Calculate

##### makelist

n:16;

cl:makelist(i,i,1,n);

l:random_perutation(cl);

Calculate

##### makelist-map-modulus-solve

/* Число букв в алфав...

/* шифрованные символ...

y2: 1;

Calculate

##### makelist-plot2d

aa: [1.38072,1.7515,1...

x: makelist(i,i,-149,...

plot2d([discrete,x,aa]);

Calculate

##### makelist-plot2d-rk

f: (1+x2^2)/(x1+t^2);

result: rk([x2,f],[x1...

x:makelist([p[1],p[2]...

Calculate

##### makelist-solve

X:[1, 2, 3, 4, 5, 6, ...

Y:[8,3,0,-1,0,3,8,15,...

g(x,y):=y=a*x^3+b*x^2...

Calculate

##### makelist

a(n) := if n=1 then 1...

makelist(a(5), n, 1,...

Calculate

##### makelist-mod

f(x) := mod(2^x, 101);

l: makelist ( mod((f(...

Calculate

##### makelist-simpsum-sum

zahl(n):=sum(10^(i-1)...

makelist(zahl(i)^2,i,...

Calculate

##### makelist-simpsum-sum

sum(2*k-1,k,1,n),simp...

f(k):=sum(2*k-1,k,1,n...

makelist(f(k),k,1,5);

Calculate

### makelist

Run Example
```(%i1)f(x) := mod(2^x, 101);
x
(%o1)                        f(x) := mod(2 , 101)
(%i2) l: makelist ( mod((f(x))^1024, 101), x, 1, 101);
(%o2) [5, 25, 24, 19, 95, 71, 52, 58, 88, 36, 79, 92, 56, 78, 87, 31, 54, 68,
37, 84, 16, 80, 97, 81, 1, 5, 25, 24, 19, 95, 71, 52, 58, 88, 36, 79, 92, 56,
78, 87, 31, 54, 68, 37, 84, 16, 80, 97, 81, 1, 5, 25, 24, 19, 95, 71, 52, 58,
88, 36, 79, 92, 56, 78, 87, 31, 54, 68, 37, 84, 16, 80, 97, 81, 1, 5, 25, 24,
19, 95, 71, 52, 58, 88, 36, 79, 92, 56, 78, 87, 31, 54, 68, 37, 84, 16, 80,
97, 81, 1, 5]
(%i3) ```
Run Example
```makelist (cosh(k*0.01)-(sinh(k*0.01)/((cosh(k*0.01)^2+sinh(k*0.01)^2)^(1/2)))*first(quad_gags((cosh(s)^2+sinh(s)^2)^(1/2),s,0,k*0.01)),k,1,100);
2          2
(%o1) [1.000050000416668 - 0.0099991667674863 sqrt(sinh (s) + cosh (s)),
2          2
1.000200006666756 - 0.019993336558263 sqrt(sinh (s) + cosh (s)),
2          2
1.000450033751013 - 0.029977524472835 sqrt(sinh (s) + cosh (s)),
2          2
1.000800106672356 - 0.039946769697986 sqrt(sinh (s) + cosh (s)),
2          2
1.001250260438369 - 0.049896147380201 sqrt(sinh (s) + cosh (s)),
2          2
1.001800540064804 - 0.059820780297379 sqrt(sinh (s) + cosh (s)),
2          2
1.002451000580082 - 0.069715850264762 sqrt(sinh (s) + cosh (s)),
2          2
1.003201707030797 - 0.079576609213687 sqrt(sinh (s) + cosh (s)),
2          2
1.004052734488219 - 0.089398389885005 sqrt(sinh (s) + cosh (s)),
2          2
1.005004168055804 - 0.099176616082811 sqrt(sinh (s) + cosh (s)),
2          2
1.0060561028777 - 0.10890681243836 sqrt(sinh (s) + cosh (s)),
2          2
1.007208644148267 - 0.11858461363877 sqrt(sinh (s) + cosh (s)),
2          2
1.008461907122592 - 0.12820577308002 sqrt(sinh (s) + cosh (s)),
2          2
1.009816017128017 - 0.13776617090925 sqrt(sinh (s) + cosh (s)),
2          2
1.01127110957667 - 0.14726182142659 sqrt(sinh (s) + cosh (s)),
2          2
1.012827329979011 - 0.15668887982258 sqrt(sinh (s) + cosh (s)),
2          2
1.014484833958375 - 0.16604364823284 sqrt(sinh (s) + cosh (s)),
2          2
1.016243787266541 - 0.17532258109716 sqrt(sinh (s) + cosh (s)),
2          2
1.018104365800307 - 0.18452228981599 sqrt(sinh (s) + cosh (s)),
2          2
1.020066755619076 - 0.19363954670243 sqrt(sinh (s) + cosh (s)),
2          2
1.022131152963465 - 0.20267128823318 sqrt(sinh (s) + cosh (s)),
2          2
1.02429776427493 - 0.21161461760678 sqrt(sinh (s) + cosh (s)),
2          2
1.026566806216406 - 0.22046680662206 sqrt(sinh (s) + cosh (s)),
2          2
1.028938505693979 - 0.22922529689402 sqrt(sinh (s) + cosh (s)),
2          2
1.031413099879573 - 0.23788770042809 sqrt(sinh (s) + cosh (s)),
2          2
1.033990836234669 - 0.24645179957755 sqrt(sinh (s) + cosh (s)),
2          2
1.03667197253505 - 0.25491554641151 sqrt(sinh (s) + cosh (s)),
2          2
1.039456776896581 - 0.26327706152384 sqrt(sinh (s) + cosh (s)),
2          2
1.042345527802019 - 0.27153463231539 sqrt(sinh (s) + cosh (s)),
2          2
1.045338514128861 - 0.27968671078386 sqrt(sinh (s) + cosh (s)),
2          2
1.048436035178234 - 0.28773191085689 sqrt(sinh (s) + cosh (s)),
2          2
1.051638400704824 - 0.29566900530478 sqrt(sinh (s) + cosh (s)),
2          2
1.054945930947853 - 0.30349692227029 sqrt(sinh (s) + cosh (s)),
2          2
1.058358956663102 - 0.31121474145261 sqrt(sinh (s) + cosh (s)),
2          2
1.061877819155985 - 0.31882168998292 sqrt(sinh (s) + cosh (s)),
2          2
1.065502870315686 - 0.32631713802827 sqrt(sinh (s) + cosh (s)),
2          2
1.06923447265034 - 0.3337005941601 sqrt(sinh (s) + cosh (s)),
2          2
1.07307299932329 - 0.34097170052232 sqrt(sinh (s) + cosh (s)),
2          2
1.077018834190404 - 0.34813022783333 sqrt(sinh (s) + cosh (s)),
2          2
1.081072371838455 - 0.3551760702543 sqrt(sinh (s) + cosh (s)),
2          2
1.085234017624587 - 0.36210924015528 sqrt(sinh (s) + cosh (s)),
2          2
1.089504187716845 - 0.36892986280836 sqrt(sinh (s) + cosh (s)),
2          2
1.093883309135799 - 0.37563817103594 sqrt(sinh (s) + cosh (s)),
2          2
1.098371819797239 - 0.38223449984004 sqrt(sinh (s) + cosh (s)),
2          2
1.102970168555971 - 0.38871928103689 sqrt(sinh (s) + cosh (s)),
2          2
1.107678815250704 - 0.39509303791898 sqrt(sinh (s) + cosh (s)),
2          2
1.112498230750031 - 0.4013563799652 sqrt(sinh (s) + cosh (s)),
2          2
1.117428896999517 - 0.40750999761736 sqrt(sinh (s) + cosh (s)),
2          2
1.122471307069898 - 0.41355465714007 sqrt(sinh (s) + cosh (s)),
2          2
1.127625965206381 - 0.41949119557871 sqrt(sinh (s) + cosh (s)),
2          2
1.132893386879076 - 0.42532051582871 sqrt(sinh (s) + cosh (s)),
2          2
1.13827409883454 - 0.43104358182767 sqrt(sinh (s) + cosh (s)),
2          2
1.143768639148453 - 0.43666141388021 sqrt(sinh (s) + cosh (s)),
2          2
1.149377557279424 - 0.44217508412387 sqrt(sinh (s) + cosh (s)),
2          2
1.155101414123941 - 0.44758571214305 sqrt(sinh (s) + cosh (s)),
2          2
1.160940782072458 - 0.45289446073657 sqrt(sinh (s) + cosh (s)),
2          2
1.166896245066636 - 0.45810253184311 sqrt(sinh (s) + cosh (s)),
2          2
1.172968398657738 - 0.46321116262783 sqrt(sinh (s) + cosh (s)),
2          2
1.179157850066182 - 0.46822162173206 sqrt(sinh (s) + cosh (s)),
2          2
1.185465218242268 - 0.47313520568744 sqrt(sinh (s) + cosh (s)),
2          2
1.191891133928069 - 0.47795323549438 sqrt(sinh (s) + cosh (s)),
2          2
1.198436239720508 - 0.48267705336456 sqrt(sinh (s) + cosh (s)),
2          2
1.20510119013562 - 0.48730801962592 sqrt(sinh (s) + cosh (s)),
2          2
1.211886651674 - 0.49184750978832 sqrt(sinh (s) + cosh (s)),
2          2
1.218793302887456 - 0.49629691176724 sqrt(sinh (s) + cosh (s)),
2          2
1.225821834446865 - 0.5006576232625 sqrt(sinh (s) + cosh (s)),
2          2
1.232972949211241 - 0.50493104928861 sqrt(sinh (s) + cosh (s)),
2          2
1.240247362298019 - 0.5091185998528 sqrt(sinh (s) + cosh (s)),
2          2
1.247645801154569 - 0.51322168777675 sqrt(sinh (s) + cosh (s)),
2          2
1.255169005630943 - 0.51724172665738 sqrt(sinh (s) + cosh (s)),
2          2
1.262817728053858 - 0.52118012896249 sqrt(sinh (s) + cosh (s)),
2          2
1.27059273330193 - 0.52503830425606 sqrt(sinh (s) + cosh (s)),
2          2
1.278494798882162 - 0.52881765754876 sqrt(sinh (s) + cosh (s)),
2          2
1.286524715007699 - 0.53251958776843 sqrt(sinh (s) + cosh (s)),
2          2
1.294683284676845 - 0.53614548634569 sqrt(sinh (s) + cosh (s)),
2          2
1.302971323753364 - 0.53969673590974 sqrt(sinh (s) + cosh (s)),
2          2
1.311389661048072 - 0.54317470908921 sqrt(sinh (s) + cosh (s)),
2          2
1.319939138401712 - 0.54658076741329 sqrt(sinh (s) + cosh (s)),
2          2
1.328620610769146 - 0.54991626030819 sqrt(sinh (s) + cosh (s)),
2          2
1.337434946304845 - 0.55318252418416 sqrt(sinh (s) + cosh (s)),
2          2
1.346383026449706 - 0.55638088160831 sqrt(sinh (s) + cosh (s)),
2          2
1.355465746019203 - 0.55951264055881 sqrt(sinh (s) + cosh (s)),
2          2
1.364684013292859 - 0.56257909375572 sqrt(sinh (s) + cosh (s)),
2          2
1.374038750105086 - 0.56558151806447 sqrt(sinh (s) + cosh (s)),
2          2
1.383530891937359 - 0.56852117396742 sqrt(sinh (s) + cosh (s)),
2          2
1.393161388011772 - 0.57139930509971 sqrt(sinh (s) + cosh (s)),
2          2
1.402931201385958 - 0.5742171378453 sqrt(sinh (s) + cosh (s)),
2          2
1.412841309049396 - 0.57697588098962 sqrt(sinh (s) + cosh (s)),
2          2
1.42289270202111 - 0.57967672542497 sqrt(sinh (s) + cosh (s)),
2          2
1.433086385448775 - 0.58232084390541 sqrt(sinh (s) + cosh (s)),
2          2
1.443423378709226 - 0.58490939084772 sqrt(sinh (s) + cosh (s)),
2          2
1.453904715510406 - 0.5874435021753 sqrt(sinh (s) + cosh (s)),
2          2
1.464531443994728 - 0.58992429520193 sqrt(sinh (s) + cosh (s)),
2          2
1.475304626843896 - 0.5923528685526 sqrt(sinh (s) + cosh (s)),
2          2
1.486225341385174 - 0.59473030211863 sqrt(sinh (s) + cosh (s)),
2          2
1.497294679699115 - 0.59705765704449 sqrt(sinh (s) + cosh (s)),
2          2
1.508513748728776 - 0.59933597574382 sqrt(sinh (s) + cosh (s)),
2          2
1.519883670390408 - 0.60156628194249 sqrt(sinh (s) + cosh (s)),
2          2
1.531405581685654 - 0.60374958074623 sqrt(sinh (s) + cosh (s)),
2          2
1.543080634815244 - 0.60588685873103 sqrt(sinh (s) + cosh (s))]
(%i2) ```
Run Example
```kill(all);
(%o0)                                done
(%i1) Punkt:[[5,12],[10,27],[20,94],[30,209],[40,426],[50,870]];
(%o1)   [[5, 12], [10, 27], [20, 94], [30, 209], [40, 426], [50, 870]]
(%i2) n:length(Punkt);
(%o2)                                  6
(%o3)                                  5
n - i
(%o4)            g(x) := x  = sum(a  x     , i, 1, Grad) + a
2        i  1                     n
(%i5) Gleichungen:map(g,Punkt);
(%o5) [12 = a  + 5 a  + 25 a  + 125 a  + 625 a  + 3125 a ,
6      5       4        3        2         1
27 = a  + 10 a  + 100 a  + 1000 a  + 10000 a  + 100000 a ,
6       5        4         3          2           1
94 = a  + 20 a  + 400 a  + 8000 a  + 160000 a  + 3200000 a ,
6       5        4         3           2            1
209 = a  + 30 a  + 900 a  + 27000 a  + 810000 a  + 24300000 a ,
6       5        4          3           2             1
426 = a  + 40 a  + 1600 a  + 64000 a  + 2560000 a  + 102400000 a ,
6       5         4          3            2              1
870 = a  + 50 a  + 2500 a  + 125000 a  + 6250000 a  + 312500000 a ]
6       5         4           3            2              1
(%i6) Unbekannte:makelist(a[i],i,1,n);
(%o6)                      [a , a , a , a , a , a ]
1   2   3   4   5   6
(%i7) l:solve(Gleichungen,Unbekannte);
29            323           103        1949         14699
(%o7) [[a  = --------, a  = -------, a  = - ----, a  = ----, a  = - -----,
1   42000000   2   1680000   3     7000   4   3360   5     4200
117
a  = ---]]
6    7
(%i8) y=Unbekannte.makelist(x^(n-i),i,1,n),l;
5          4         3         2
29 x      323 x     103 x    1949 x    14699 x   117
(%o8)      y = -------- + ------- - ------ + ------- - ------- + ---
42000000   1680000    7000     3360      4200      7
(%i9) ```

### Related Help

Help for Makelist