Sponsored links: Algebra eBooks
 

Related

kronecker_product-matrix-product

a: matrix([4,9], [3,5]);

b: matrix([7,5],[1,2]);

c:matrix([2,3],[3,5]);

Calculate

kronecker_product-matrix-product

X: matrix([1,0],[0,1]);

Y: matrix([M11,M12,M1...

Z: matrix([1,0],[0,1]);

Calculate

kronecker_product-matrix-product

a: matrix([1, 0], [0,...

b: matrix([1, 1], [1,...

c: matrix([3, 7], [5,...

Calculate

kronecker_product-matrix-product

a:matrix([4,9,2],[3,5...

b:matrix([7],[5]);

kronecker_product(a, b);

Calculate

kronecker_product-matrix-product

a: matrix([1,1],[1,1]);

b: matrix([1,0],[0,1]);

kronecker_product(a, b);

Calculate

kronecker_product-matrix-product

a: matrix([5,10,15],[...

b: matrix([5,10,15],[...

c: matrix([x]);

Calculate

kronecker_product-matrix-product

a: matrix([5,10,15],[...

b: matrix([5,15,10,1]...

c: matrix([x]);

Calculate

kronecker_product-matrix-product

U: matrix([1,1,1,1],[...

I: matrix([1,0],[0,1]);

S_z: matrix([1,0],[0,...

Calculate

kronecker_product-matrix-product-sqrt

X: matrix([0,1],[1,0]);

R: matrix([0,0],[0,1]);

Y: matrix([0,-sqrt(-1...

Calculate

kronecker_product

Run Example
(%i1)I: matrix([1,0],[0,1]);
                                   [ 1  0 ]
(%o1)                              [      ]
                                   [ 0  1 ]
(%i2) S_z: matrix([1,0],[0,-1]);
                                  [ 1   0  ]
(%o2)                             [        ]
                                  [ 0  - 1 ]
(%i3) S_x: matrix([0,1],[1,0]);
                                   [ 0  1 ]
(%o3)                              [      ]
                                   [ 1  0 ]
(%i4) S_y: matrix([0,-%i],[%i,0]);
                                 [ 0   - %i ]
(%o4)                            [          ]
                                 [ %i   0   ]
(%i5) [vals,vecs]:eigenvectors(kronecker_product(S_x,S_y));
(%o5) [[[- 1, 1], [2, 2]], [[[1, 0, 0, - %i], [0, 1, %i, 0]], 
                                             [[1, 0, 0, %i], [0, 1, - %i, 0]]]]
(%i6) 
Run Example
a: matrix([1, 0], [0, 1]);
                                   [ 1  0 ]
(%o1)                              [      ]
                                   [ 0  1 ]
(%i2) b: matrix([1, 1], [1, 1], [1, 1]);
                                   [ 1  1 ]
                                   [      ]
(%o2)                              [ 1  1 ]
                                   [      ]
                                   [ 1  1 ]
(%i3) c: matrix([3, 7], [5, 11], [3, 14]);
                                   [ 3  7  ]
                                   [       ]
(%o3)                              [ 5  11 ]
                                   [       ]
                                   [ 3  14 ]
(%i4) d: matrix([6, 3], [4, 7]);
                                   [ 6  3 ]
(%o4)                              [      ]
                                   [ 4  7 ]
(%i5) e: matrix([5, 7], [11, 1]);
                                   [ 5   7 ]
(%o5)                              [       ]
                                   [ 11  1 ]
(%i6) kronecker_product(a, b);
                                [ 1  1  0  0 ]
                                [            ]
                                [ 1  1  0  0 ]
                                [            ]
                                [ 1  1  0  0 ]
(%o6)                           [            ]
                                [ 0  0  1  1 ]
                                [            ]
                                [ 0  0  1  1 ]
                                [            ]
                                [ 0  0  1  1 ]
(%i7) kronecker_product(b, a);
                                [ 1  0  1  0 ]
                                [            ]
                                [ 0  1  0  1 ]
                                [            ]
                                [ 1  0  1  0 ]
(%o7)                           [            ]
                                [ 0  1  0  1 ]
                                [            ]
                                [ 1  0  1  0 ]
                                [            ]
                                [ 0  1  0  1 ]
(%i8) 
Run Example
a: matrix([g0+g3,g2-i*g3],[g2+i*g3,g0-g3]);
                           [  g3 + g0   g2 - g3 i ]
(%o1)                      [                      ]
                           [ g3 i + g2   g0 - g3  ]
(%i2) b: matrix([g0+g3,g2-i*g3],[g2+i*g3,g0-g3]);
                           [  g3 + g0   g2 - g3 i ]
(%o2)                      [                      ]
                           [ g3 i + g2   g0 - g3  ]
(%i3) kronecker_product(a, b);
               [               2       ]
               [      (g3 + g0)        ]         [  (g3 + g0) (g2 - g3 i)  ]
               [                       ]         [                         ]
               [ (g3 + g0) (g3 i + g2) ]         [   (g0 - g3) (g3 + g0)   ]
(%o3)  Col 1 = [                       ] Col 2 = [                         ]
               [ (g3 + g0) (g3 i + g2) ]         [ (g2 - g3 i) (g3 i + g2) ]
               [                       ]         [                         ]
               [                2      ]         [  (g0 - g3) (g3 i + g2)  ]
               [     (g3 i + g2)       ]
                                                      [                2      ]
                  [  (g3 + g0) (g2 - g3 i)  ]         [     (g2 - g3 i)       ]
                  [                         ]         [                       ]
                  [ (g2 - g3 i) (g3 i + g2) ]         [ (g0 - g3) (g2 - g3 i) ]
          Col 3 = [                         ] Col 4 = [                       ]
                  [   (g0 - g3) (g3 + g0)   ]         [ (g0 - g3) (g2 - g3 i) ]
                  [                         ]         [                       ]
                  [  (g0 - g3) (g3 i + g2)  ]         [               2       ]
                                                      [      (g0 - g3)        ]
(%i4) 

Related Help

Help for Kronecker_product