Sponsored links: Algebra eBooks
 

Related

grind-linsolve

eq1: b1 + b3*w + 2*b4...

eq2: b2 + b3*d + 2*b5...

grind(linsolve([eq1,e...

Calculate

grind-solve

e01: 25*x^2+30*x*y+9*...

e02: 1*x^2+2*x*y+1*y^...

e03: -1*x^2+2*x*y-1*y...

Calculate

grind-matrix

R : matrix([r[0], r[1...

CrossProductMatrix(x,...

IA : R, r = ia;

Calculate

grind-integrate-partfrac

partfrac(1/(1+x^5), x);

grind(partfrac(1/(1+x...

integrate((x^3-2*x^2+...

Calculate

grind-linsolve-ratsimp

eq1: b1 + b3*w + 2*b4...

eq2: b2 + b3*d + 2*b5...

grind(linsolve([eq1,e...

Calculate

grind-true

grind:true;

x^2+2;

Calculate

grind-plot2d-sqrt-taylor
plot2d([sqrt(x),f(x)],[x,0,3]);

grind(''taylor(x^(1/2...

f(x):=1+(x-1)/2-(x-1)...

plot2d([sqrt(x),f(x)]...

Calculate

grind-matrix-transpose

X : matrix([1, -2, 4,...

grind(((transpose(X)....

Calculate

grind-integrate

tau:T/(A+T);

a_T:A/(A+T);

eq:B+(C-B)*tau^2*(1-a...

Calculate

grind

Run Example
(%i1)simp:false;
(%o1)                                false
(%i2) radexpand:false;
(%o2)                                false
(%i3) 1/a, simp:false;
                                       1
(%o3)                                  -
                                       a
(%i4) 1/b, simp:false;
                                       1
(%o4)                                  -
                                       b
(%i5) 1/(a*b), simp:false;
                                       1
(%o5)                                 ---
                                      a b
(%i6) tellsimp(1/(a*b), ((1/a)*(1/b)));
(%o6)                         [/rule1, simpquot]
(%i7) 1/(a*b);
                                       1
(%o7)                                 ---
                                      a b
(%i8) disprule(all);
                                       1     1  1
(%t8)                        /rule1 : --- -> - (-)
                                      a b    a  b

(%o8)                                [%t8]
(%i9) 1/(a*b);
                                       1
(%o9)                                 ---
                                      a b
(%i10) properties("*");
(%o10)              [mirror symmetry, nary, rule, operator]
(%i11) rat(1/(a*b));
                                       1
(%o11)/R/                             ---
                                      a b
(%i12) map('ratsimp, 1/(a*b));
                                       1
(%o12)                                ---
                                      a b
(%i13) grind(1/(a*b));

1/(a*b)$
(%o13)                               done
(%i14) partfrac(1/(a*b), a);
                                     1  - 1
(%o14)                            + (- a   )
                                     b
(%i15) a^-1;
                                      - 1
(%o15)                               a
(%i16) 
Run Example
v1:a+b*x^2+c*x^3;
                                   3      2
(%o1)                           c x  + b x  + a
(%i2) v2:(1-(x/(C9/2))^2)*d+(1-(x/(C9/2))^3)*e;
                                    2              3
                                 4 x            8 x
(%o2)                     d (1 - ----) + e (1 - ----)
                                   2              3
                                 C9             C9
(%i3) l1:f*(1-8*x^2/C9^2-16*x^4/C9^4);
                                    2       4
                                 8 x    16 x
(%o3)                       f (- ---- - ----- + 1)
                                   2       4
                                 C9      C9
(%i4) l2:g*(1-8*x^2/C9^2-16*x^4/C9^4);
                                    2       4
                                 8 x    16 x
(%o4)                       g (- ---- - ----- + 1)
                                   2       4
                                 C9      C9
(%i5) E:kn*integrate((v1-v2+l1-l2)^2,x,0,C9/2)+C7*integrate(diff(diff(v1,x),x)^2,x,0,C9/2)+C8*integrate(diff(diff(v2,x),x)^2,x,0,C9/2)+C13*integrate(l1^2,x,0,C9/2)+C14*integrate(l2^2,x,0,C9/2)-C11*C9*subst(x=C9/2,v1)-C11*C10*subst(x=C9/2,diff(v1,x));
               2   7             6        2   5
(%o5) (kn (45 c  C9  + 210 b c C9  + 252 b  C9
                                                          4
 + (1050 c g - 1050 c f - 540 c e - 420 c d + 1260 a c) C9
                                                            3
 + (2112 b g - 2112 b f - 1680 b e - 1344 b d + 3360 a b) C9
           2                                                       2
 + (15104 g  + (- 30208 f + 13776 e + 13824 d - 5376 a) g + 15104 f
                                             2
 + (- 13776 e - 13824 d + 5376 a) f + 12960 e  + (23520 d - 30240 a) e
          2                      2
 + 10752 d  - 26880 a d + 20160 a ) C9))/40320
          2   3           2      2                   3       2
   C7 (3 c  C9  + 6 b c C9  + 4 b  C9)           c C9    b C9
 + ----------------------------------- - C11 C9 (----- + ----- + a)
                    2                              8       4
                  2                2               2
            3 c C9            118 g  C14 C9   118 f  C13 C9
 - C10 C11 (------- + b C9) + ------------- + -------------
               4                   315             315
        2                2
   (96 e  + 96 d e + 32 d ) C8
 + ---------------------------
                 3
               C9
(%i6) sol:solve([diff(E,a)=0,diff(E,b)=0,diff(E,c)=0,diff(E,d)=0,diff(E,e)=0,diff(E,f)=0,diff(E,g)=0],[a,b,c,d,e,f,g]);
                      4
(%o6) [[a = - (C11 (kn  (C10 (C14 + C13) C8 + C10 (C14 + C13) C7)
     3                                                10
 + kn  (8260 C10 C13 C14 C8 + 8260 C10 C13 C14 C7)) C9
          3                              2
 + C11 (kn  ((342760 C14 + 342760 C13) C8  + (- 343032 C14 - 343032 C13) C7 C8
                                 2      2
 + (- 685792 C14 - 685792 C13) C7 ) + kn
                     2                                             2     8
 (- 264320 C13 C14 C8  - 1982400 C13 C14 C7 C8 - 1718080 C13 C14 C7 )) C9
          3                                    2
 + C11 (kn  (C10 (2612400 C14 + 2612400 C13) C8
 + C10 (6117552 C14 + 6117552 C13) C7 C8)
     2                                                      2     6
 + kn  (237888000 C10 C13 C14 C7 C8 - 6343680 C10 C13 C14 C8 )) C9
          2                                         2
 + C11 (kn  ((9739457280 C14 + 9739457280 C13) C7 C8
                                           2
 + (- 14298359040 C14 - 14298359040 C13) C7  C8)
                               2                         2        4
 + kn (5633187840 C13 C14 C7 C8  - 21010268160 C13 C14 C7  C8)) C9
          2                                              2
 + C11 (kn  C10 (47398256640 C14 + 47398256640 C13) C7 C8
                                   2    2
 + 42629529600 kn C10 C13 C14 C7 C8 ) C9
                                                       2   2
 + C11 (kn (- 2046217420800 C14 - 2046217420800 C13) C7  C8
                           2   2       4
 - 2046217420800 C13 C14 C7  C8 ))/((kn
                      2                                                 2
 ((16 C14 + 16 C13) C8  + (32 C14 + 32 C13) C7 C8 + (16 C14 + 16 C13) C7 )
     3                   2                                           2     8
 + kn  (132160 C13 C14 C8  + 264320 C13 C14 C7 C8 + 132160 C13 C14 C7 )) C9
      3                                       2
 + (kn  ((181542144 C14 + 181542144 C13) C7 C8
                                     2
 + (181542144 C14 + 181542144 C13) C7  C8)
     2                          2                        2        4
 + kn  (4136079360 C13 C14 C7 C8  + 4136079360 C13 C14 C7  C8)) C9
     2                                           2   2
 + kn  (1997663109120 C14 + 1997663109120 C13) C7  C8
                              2   2
 + 2046217420800 kn C13 C14 C7  C8 ), b = 
        3
(C11 (kn  (C10 (C14 + C13) C8 + C10 (C14 + C13) C7)
     2                                                8
 + kn  (8260 C10 C13 C14 C8 + 8260 C10 C13 C14 C7)) C9
          2                              2
 + C11 (kn  ((471240 C14 + 471240 C13) C8  + (471240 C14 + 471240 C13) C7 C8)
                           2                             6
 + kn (- 5947200 C13 C14 C8  - 5947200 C13 C14 C7 C8)) C9
          2                                    2
 + C11 (kn  (C10 (3583440 C14 + 3583440 C13) C8
 + C10 (11346384 C14 + 11346384 C13) C7 C8)
                                                             2     4
 + kn (258504960 C10 C13 C14 C7 C8 - 118944000 C10 C13 C14 C8 )) C9
                                                    2
 + C11 (kn (33385605120 C14 + 33385605120 C13) C7 C8
                            2    2
 + 37300838400 C13 C14 C7 C8 ) C9  + C11
                                                    2
 (kn C10 (124853944320 C14 + 124853944320 C13) C7 C8
                                 2       3
 + 127888588800 C10 C13 C14 C7 C8 ))/((kn
                    2                                             2
 ((4 C14 + 4 C13) C8  + (8 C14 + 8 C13) C7 C8 + (4 C14 + 4 C13) C7 )
     2                  2                                         2     8
 + kn  (33040 C13 C14 C8  + 66080 C13 C14 C7 C8 + 33040 C13 C14 C7 )) C9
      2                                     2
 + (kn  ((45385536 C14 + 45385536 C13) C7 C8
                                   2
 + (45385536 C14 + 45385536 C13) C7  C8)
                               2                        2        4
 + kn (1034019840 C13 C14 C7 C8  + 1034019840 C13 C14 C7  C8)) C9
                                              2   2
 + kn (499415777280 C14 + 499415777280 C13) C7  C8
                          2   2
 + 511554355200 C13 C14 C7  C8 ), c = (C11
    2                              2
 (kn  ((278656 C14 + 278656 C13) C8  + (278656 C14 + 278656 C13) C7 C8)
                         2                             5
 + kn (3700480 C13 C14 C8  + 3700480 C13 C14 C7 C8)) C9
          2                                   2                             2
 + C11 (kn  C10 (2128896 C14 + 2128896 C13) C8  + 66608640 kn C10 C13 C14 C8 )
   3                                                    2
 C9  + C11 (kn (- 4673894400 C14 - 4673894400 C13) C7 C8
                           2          3
 - 5328691200 C13 C14 C7 C8 ) C9)/((kn
                2                                         2
 ((C14 + C13) C8  + (2 C14 + 2 C13) C7 C8 + (C14 + C13) C7 )
     2                 2                                        2     8
 + kn  (8260 C13 C14 C8  + 16520 C13 C14 C7 C8 + 8260 C13 C14 C7 )) C9
      2                                     2
 + (kn  ((11346384 C14 + 11346384 C13) C7 C8
                                   2
 + (11346384 C14 + 11346384 C13) C7  C8)
                              2                       2        4
 + kn (258504960 C13 C14 C7 C8  + 258504960 C13 C14 C7  C8)) C9
                                              2   2
 + kn (124853944320 C14 + 124853944320 C13) C7  C8
                          2   2
 + 127888588800 C13 C14 C7  C8 ), d = - (C11
    3
 (kn  (C10 (C14 + C13) C8 + C10 (C14 + C13) C7)
     2                                                10
 + kn  (8260 C10 C13 C14 C8 + 8260 C10 C13 C14 C7)) C9
                                                      2
 + C11 (kn (5947200 C13 C14 C7 C8 + 5947200 C13 C14 C7 )
     2                                                                    2
 + kn  ((- 471240 C14 - 471240 C13) C7 C8 + (- 471240 C14 - 471240 C13) C7 ))
   8          2
 C9  + C11 (kn  C10 (7762944 C14 + 7762944 C13) C7 C8
                                     6
 + 377448960 kn C10 C13 C14 C7 C8) C9  + C11
                                             2                            2
 (kn (- 33385605120 C14 - 33385605120 C13) C7  C8 - 37300838400 C13 C14 C7  C8)
   4      3                      2
 C9 )/((kn  ((16 C14 + 16 C13) C8  + (32 C14 + 32 C13) C7 C8
                       2      2                   2
 + (16 C14 + 16 C13) C7 ) + kn  (132160 C13 C14 C8  + 264320 C13 C14 C7 C8
                    2     8      2                                       2
 + 132160 C13 C14 C7 )) C9  + (kn  ((181542144 C14 + 181542144 C13) C7 C8
                                     2
 + (181542144 C14 + 181542144 C13) C7  C8)
                               2                        2        4
 + kn (4136079360 C13 C14 C7 C8  + 4136079360 C13 C14 C7  C8)) C9
                                                2   2
 + kn (1997663109120 C14 + 1997663109120 C13) C7  C8
                           2   2
 + 2046217420800 C13 C14 C7  C8 ), e = 
        2                                                            2
(C11 (kn  ((34832 C14 + 34832 C13) C7 C8 + (34832 C14 + 34832 C13) C7 )
                                               2     8
 + kn (462560 C13 C14 C7 C8 + 462560 C13 C14 C7 )) C9
          2
 + C11 (kn  C10 (266112 C14 + 266112 C13) C7 C8 + 8326080 kn C10 C13 C14 C7 C8)
   6                                               2
 C9  + C11 (kn (- 584236800 C14 - 584236800 C13) C7  C8
                       2       4      3
 - 666086400 C13 C14 C7  C8) C9 )/((kn
                2                                         2
 ((C14 + C13) C8  + (2 C14 + 2 C13) C7 C8 + (C14 + C13) C7 )
     2                 2                                        2     8
 + kn  (8260 C13 C14 C8  + 16520 C13 C14 C7 C8 + 8260 C13 C14 C7 )) C9
      2                                     2
 + (kn  ((11346384 C14 + 11346384 C13) C7 C8
                                   2
 + (11346384 C14 + 11346384 C13) C7  C8)
                              2                       2        4
 + kn (258504960 C13 C14 C7 C8  + 258504960 C13 C14 C7  C8)) C9
                                              2   2
 + kn (124853944320 C14 + 124853944320 C13) C7  C8
                          2   2          2
 + 127888588800 C13 C14 C7  C8 ), f = (kn  C11
              2                                 2    8
 (21735 C14 C8  + 43470 C14 C7 C8 + 21735 C14 C7 ) C9
     2                       2                           6
 + kn  C11 (165690 C10 C14 C8  + 165690 C10 C14 C7 C8) C9
                              2                   2       4
 + kn C11 (529411680 C14 C7 C8  + 529411680 C14 C7  C8) C9
                                  2   2                         2   2
 + 2709504000 kn C10 C11 C14 C7 C8  C9  - 22759833600 C11 C14 C7  C8 )
     3                2                                         2
/((kn  ((C14 + C13) C8  + (2 C14 + 2 C13) C7 C8 + (C14 + C13) C7 )
     2                 2                                        2     8
 + kn  (8260 C13 C14 C8  + 16520 C13 C14 C7 C8 + 8260 C13 C14 C7 )) C9
      2                                     2
 + (kn  ((11346384 C14 + 11346384 C13) C7 C8
                                   2
 + (11346384 C14 + 11346384 C13) C7  C8)
                              2                       2        4
 + kn (258504960 C13 C14 C7 C8  + 258504960 C13 C14 C7  C8)) C9
                                              2   2
 + kn (124853944320 C14 + 124853944320 C13) C7  C8
                          2   2            2
 + 127888588800 C13 C14 C7  C8 ), g = - (kn  C11
              2                                 2    8
 (21735 C13 C8  + 43470 C13 C7 C8 + 21735 C13 C7 ) C9
     2                       2                           6
 + kn  C11 (165690 C10 C13 C8  + 165690 C10 C13 C7 C8) C9
                              2                   2       4
 + kn C11 (529411680 C13 C7 C8  + 529411680 C13 C7  C8) C9
                                  2   2                         2   2
 + 2709504000 kn C10 C11 C13 C7 C8  C9  - 22759833600 C11 C13 C7  C8 )
     3                2                                         2
/((kn  ((C14 + C13) C8  + (2 C14 + 2 C13) C7 C8 + (C14 + C13) C7 )
     2                 2                                        2     8
 + kn  (8260 C13 C14 C8  + 16520 C13 C14 C7 C8 + 8260 C13 C14 C7 )) C9
      2                                     2
 + (kn  ((11346384 C14 + 11346384 C13) C7 C8
                                   2
 + (11346384 C14 + 11346384 C13) C7  C8)
                              2                       2        4
 + kn (258504960 C13 C14 C7 C8  + 258504960 C13 C14 C7  C8)) C9
                                              2   2
 + kn (124853944320 C14 + 124853944320 C13) C7  C8
                          2   2
 + 127888588800 C13 C14 C7  C8 )]]
(%i7) subst(x=0,v2);
(%o7)                                e + d
(%i8) grind(subst(sol,a));

-(C11*(kn^4*(C10*(C14+C13)*C8+C10*(C14+C13)*C7)
      +kn^3*(8260*C10*C13*C14*C8+8260*C10*C13*C14*C7))*C9^10
 +C11*(kn^3*((342760*C14+342760*C13)*C8^2+(-343032*C14-343032*C13)*C7*C8
                                         +(-685792*C14-685792*C13)*C7^2)
      +kn^2*(-264320*C13*C14*C8^2-1982400*C13*C14*C7*C8-1718080*C13*C14*C7^2))
     *C9^8
 +C11*(kn^3*(C10*(2612400*C14+2612400*C13)*C8^2
            +C10*(6117552*C14+6117552*C13)*C7*C8)
      +kn^2*(237888000*C10*C13*C14*C7*C8-6343680*C10*C13*C14*C8^2))*C9^6
 +C11*(kn^2*((9739457280*C14+9739457280*C13)*C7*C8^2
            +(-14298359040*C14-14298359040*C13)*C7^2*C8)
      +kn*(5633187840*C13*C14*C7*C8^2-21010268160*C13*C14*C7^2*C8))*C9^4
 +C11*(kn^2*C10*(47398256640*C14+47398256640*C13)*C7*C8^2
      +42629529600*kn*C10*C13*C14*C7*C8^2)*C9^2
 +C11*(kn*(-2046217420800*C14-2046217420800*C13)*C7^2*C8^2
      -2046217420800*C13*C14*C7^2*C8^2))
 /((kn^4*((16*C14+16*C13)*C8^2+(32*C14+32*C13)*C7*C8+(16*C14+16*C13)*C7^2)
  +kn^3*(132160*C13*C14*C8^2+264320*C13*C14*C7*C8+132160*C13*C14*C7^2))
  *C9^8
  +(kn^3*((181542144*C14+181542144*C13)*C7*C8^2
         +(181542144*C14+181542144*C13)*C7^2*C8)
   +kn^2*(4136079360*C13*C14*C7*C8^2+4136079360*C13*C14*C7^2*C8))
   *C9^4+kn^2*(1997663109120*C14+1997663109120*C13)*C7^2*C8^2
  +2046217420800*kn*C13*C14*C7^2*C8^2)$
(%o8)                                done
(%i9) grind(subst(sol,b));

(C11*(kn^3*(C10*(C14+C13)*C8+C10*(C14+C13)*C7)
     +kn^2*(8260*C10*C13*C14*C8+8260*C10*C13*C14*C7))*C9^8
 +C11*(kn^2*((471240*C14+471240*C13)*C8^2+(471240*C14+471240*C13)*C7*C8)
      +kn*(-5947200*C13*C14*C8^2-5947200*C13*C14*C7*C8))*C9^6
 +C11*(kn^2*(C10*(3583440*C14+3583440*C13)*C8^2
            +C10*(11346384*C14+11346384*C13)*C7*C8)
      +kn*(258504960*C10*C13*C14*C7*C8-118944000*C10*C13*C14*C8^2))*C9^4
 +C11*(kn*(33385605120*C14+33385605120*C13)*C7*C8^2
      +37300838400*C13*C14*C7*C8^2)*C9^2
 +C11*(kn*C10*(124853944320*C14+124853944320*C13)*C7*C8^2
      +127888588800*C10*C13*C14*C7*C8^2))
 /((kn^3*((4*C14+4*C13)*C8^2+(8*C14+8*C13)*C7*C8+(4*C14+4*C13)*C7^2)
  +kn^2*(33040*C13*C14*C8^2+66080*C13*C14*C7*C8+33040*C13*C14*C7^2))
  *C9^8
  +(kn^2*((45385536*C14+45385536*C13)*C7*C8^2
         +(45385536*C14+45385536*C13)*C7^2*C8)
   +kn*(1034019840*C13*C14*C7*C8^2+1034019840*C13*C14*C7^2*C8))
   *C9^4+kn*(499415777280*C14+499415777280*C13)*C7^2*C8^2
  +511554355200*C13*C14*C7^2*C8^2)$
(%o9)                                done
(%i10) grind(subst(sol,c));

(C11*(kn^2*((278656*C14+278656*C13)*C8^2+(278656*C14+278656*C13)*C7*C8)
     +kn*(3700480*C13*C14*C8^2+3700480*C13*C14*C7*C8))*C9^5
 +C11*(kn^2*C10*(2128896*C14+2128896*C13)*C8^2+66608640*kn*C10*C13*C14*C8^2)
     *C9^3
 +C11*(kn*(-4673894400*C14-4673894400*C13)*C7*C8^2-5328691200*C13*C14*C7*C8^2)
     *C9)
 /((kn^3*((C14+C13)*C8^2+(2*C14+2*C13)*C7*C8+(C14+C13)*C7^2)
  +kn^2*(8260*C13*C14*C8^2+16520*C13*C14*C7*C8+8260*C13*C14*C7^2))
  *C9^8
  +(kn^2*((11346384*C14+11346384*C13)*C7*C8^2
         +(11346384*C14+11346384*C13)*C7^2*C8)
   +kn*(258504960*C13*C14*C7*C8^2+258504960*C13*C14*C7^2*C8))
   *C9^4+kn*(124853944320*C14+124853944320*C13)*C7^2*C8^2
  +127888588800*C13*C14*C7^2*C8^2)$
(%o10)                               done
(%i11) grind(subst(sol,d));

-(C11*(kn^3*(C10*(C14+C13)*C8+C10*(C14+C13)*C7)
      +kn^2*(8260*C10*C13*C14*C8+8260*C10*C13*C14*C7))*C9^10
 +C11*(kn*(5947200*C13*C14*C7*C8+5947200*C13*C14*C7^2)
      +kn^2*((-471240*C14-471240*C13)*C7*C8+(-471240*C14-471240*C13)*C7^2))
     *C9^8
 +C11*(kn^2*C10*(7762944*C14+7762944*C13)*C7*C8
      +377448960*kn*C10*C13*C14*C7*C8)*C9^6
 +C11*(kn*(-33385605120*C14-33385605120*C13)*C7^2*C8
      -37300838400*C13*C14*C7^2*C8)*C9^4)
 /((kn^3*((16*C14+16*C13)*C8^2+(32*C14+32*C13)*C7*C8+(16*C14+16*C13)*C7^2)
  +kn^2*(132160*C13*C14*C8^2+264320*C13*C14*C7*C8+132160*C13*C14*C7^2))
  *C9^8
  +(kn^2*((181542144*C14+181542144*C13)*C7*C8^2
         +(181542144*C14+181542144*C13)*C7^2*C8)
   +kn*(4136079360*C13*C14*C7*C8^2+4136079360*C13*C14*C7^2*C8))
   *C9^4+kn*(1997663109120*C14+1997663109120*C13)*C7^2*C8^2
  +2046217420800*C13*C14*C7^2*C8^2)$
(%o11)                               done
(%i12) grind(subst(sol,e));

(C11*(kn^2*((34832*C14+34832*C13)*C7*C8+(34832*C14+34832*C13)*C7^2)
     +kn*(462560*C13*C14*C7*C8+462560*C13*C14*C7^2))*C9^8
 +C11*(kn^2*C10*(266112*C14+266112*C13)*C7*C8+8326080*kn*C10*C13*C14*C7*C8)
     *C9^6
 +C11*(kn*(-584236800*C14-584236800*C13)*C7^2*C8-666086400*C13*C14*C7^2*C8)
     *C9^4)
 /((kn^3*((C14+C13)*C8^2+(2*C14+2*C13)*C7*C8+(C14+C13)*C7^2)
  +kn^2*(8260*C13*C14*C8^2+16520*C13*C14*C7*C8+8260*C13*C14*C7^2))
  *C9^8
  +(kn^2*((11346384*C14+11346384*C13)*C7*C8^2
         +(11346384*C14+11346384*C13)*C7^2*C8)
   +kn*(258504960*C13*C14*C7*C8^2+258504960*C13*C14*C7^2*C8))
   *C9^4+kn*(124853944320*C14+124853944320*C13)*C7^2*C8^2
  +127888588800*C13*C14*C7^2*C8^2)$
(%o12)                               done
(%i13) grind(subst(sol,f));

(kn^2*C11*(21735*C14*C8^2+43470*C14*C7*C8+21735*C14*C7^2)*C9^8
 +kn^2*C11*(165690*C10*C14*C8^2+165690*C10*C14*C7*C8)*C9^6
 +kn*C11*(529411680*C14*C7*C8^2+529411680*C14*C7^2*C8)*C9^4
 +2709504000*kn*C10*C11*C14*C7*C8^2*C9^2-22759833600*C11*C14*C7^2*C8^2)
 /((kn^3*((C14+C13)*C8^2+(2*C14+2*C13)*C7*C8+(C14+C13)*C7^2)
  +kn^2*(8260*C13*C14*C8^2+16520*C13*C14*C7*C8+8260*C13*C14*C7^2))
  *C9^8
  +(kn^2*((11346384*C14+11346384*C13)*C7*C8^2
         +(11346384*C14+11346384*C13)*C7^2*C8)
   +kn*(258504960*C13*C14*C7*C8^2+258504960*C13*C14*C7^2*C8))
   *C9^4+kn*(124853944320*C14+124853944320*C13)*C7^2*C8^2
  +127888588800*C13*C14*C7^2*C8^2)$
(%o13)                               done
(%i14) grind(subst(sol,g));

-(kn^2*C11*(21735*C13*C8^2+43470*C13*C7*C8+21735*C13*C7^2)*C9^8
 +kn^2*C11*(165690*C10*C13*C8^2+165690*C10*C13*C7*C8)*C9^6
 +kn*C11*(529411680*C13*C7*C8^2+529411680*C13*C7^2*C8)*C9^4
 +2709504000*kn*C10*C11*C13*C7*C8^2*C9^2-22759833600*C11*C13*C7^2*C8^2)
 /((kn^3*((C14+C13)*C8^2+(2*C14+2*C13)*C7*C8+(C14+C13)*C7^2)
  +kn^2*(8260*C13*C14*C8^2+16520*C13*C14*C7*C8+8260*C13*C14*C7^2))
  *C9^8
  +(kn^2*((11346384*C14+11346384*C13)*C7*C8^2
         +(11346384*C14+11346384*C13)*C7^2*C8)
   +kn*(258504960*C13*C14*C7*C8^2+258504960*C13*C14*C7^2*C8))
   *C9^4+kn*(124853944320*C14+124853944320*C13)*C7^2*C8^2
  +127888588800*C13*C14*C7^2*C8^2)$
(%o14)                               done
(%i15) 
Run Example
grind(diff(x^-16 - const,x));

-16/x^17$
(%o1)                                done
(%i2) 
[assume,grind,solve,sqrt] [atan,diff,ev,eval,float,grind,numer,solve] [atan,diff,ev,float,grind,numer,solve] [beta,diff,grind,solve,sum] [beta,diff,grind] [beta,eval,grind,integrate] [bfloat,expand,fpprec,grind,log,taylor,taytorat] [bfloat,fpprec,grind,log] [bfloat,fpprec,grind,makelist] [block,cholesky,copymatrix,exp,expand,fundef,grind,length,makelist,matrix,sqrt,string,sum] [block,grind,load] [clear_rules,disprule,false,grind,map,partfrac,properties,radexpand,rat,simp,tellsimpafter,true] [cos,diff,exp,grind,sin] [cos,draw,draw2d,grind,load,sin,sqrt] [cos,float,grind,pi,sin] [cos,grind,integrate,logabs,sin,true] [cos,grind,sin] [diff,expand,grind] [diff,fullratsimp,grind,linsolve,lsum] [diff,grind,load] [diff,grind,log,plot2d,solve] [diff,grind,log] [diff,grind,ratsimp] [diff,grind] [disprule,facts,false,grind,map,partfrac,properties,radexpand,rat,simp,tellsimp] [disprule,false,grind,map,noeval,partfrac,properties,radexpand,rat,simp,tellsimp] [disprule,false,grind,map,partfrac,properties,radexpand,rat,simp,tellsimp] [disprule,false,grind,map,partfrac,properties,radexpand,rat,simp,tellsimpafter,true] [ev,grind,integrate,nouns] [ev,grind,log,numer,solve] [expand,grind] [first,grind,solve] [grind,integrate,subst] [grind,integrate] [grind,linsolve,niceindices,powerseries] [grind,linsolve,ratsimp] [grind,linsolve,sqrt] [grind,linsolve,tex] [grind,linsolve] [grind,matrix,transpose] [grind,matrix] [grind,partfrac] [grind,plot2d,sqrt,taylor] [grind,solve] [grind,taylor] [grind,true] [grind]

Related Help

Help for Grind