Sponsored links: Algebra eBooks
 

Related

factorout-ratsimp

Fs: 1/(s*C2)*(R1+1/(s...

Fs: ratsimp(Fs);

Hn: (Icp/(2*3.14)*Fs*...

Calculate

factorout

sss: (3*x^4+3*x+4)/((...

factorout((3*x^4+3*x+...

Calculate

factorout

expr: -((1+s*s*l*c)*(...

factorout(expr,s);

Calculate

factorout-matrix

a:matrix([0,-(wz+c),(...

b:matrix([p,q,r]);

E:a.b;

Calculate

factorout-false-lhs-ratsimpexpons

eq:(x^2-17*x+1)^(x^2-...

ratdisp:false;

ratsimpexpons:false;

Calculate

factorout

? factorout;

Calculate

factorout

eq1:C*L*s^2 + 10*C*R*...

factorout(eq1, s);

Calculate

factorout-subst

expr: z^3 + a1*z*w + ...

factorout (subst (exp...

Calculate

factorout-false-lhs-ratsimpexpons

eq:(x^2-17*x+1)^(x^2-...

ratdisp:false;

ratsimpexpons:false;

Calculate

factorout-subst

expr: z^3 + a1*z*w + ...

factorout (subst (exp...

Calculate

factorout

Run Example
(%i1)a:matrix([0,-(wz+c),(wy+b)],[(wz+c),0,-(wx+a)],[-(wy+b),(wx+a),0]);
                       [    0      - wz - c   wy + b  ]
                       [                              ]
(%o1)                  [  wz + c      0      - wx - a ]
                       [                              ]
                       [ - wy - b   wx + a      0     ]
(%i2) b:matrix([p,q,r]);
(%o2)                             [ p  q  r ]
(%i3) E:a.b;
                         [ q (- wz - c) + r (wy + b) ]
                         [                           ]
(%o3)                    [ p (wz + c) + r (- wx - a) ]
                         [                           ]
                         [ p (- wy - b) + q (wx + a) ]
(%i4) F:expand(E);
                         [ - q wz + r wy + b r - c q ]
                         [                           ]
(%o4)                    [  p wz - r wx - a r + c p  ]
                         [                           ]
                         [ - p wy + q wx + a q - b p ]
(%i5) factorout(F[1,1],b,c);
(%o5)                      - q wz + r wy + b r - c q
(%i6) 
Run Example
vdWP:R*T/(V-b)-a/V^2;
                                   R T    a
(%o1)                             ----- - --
                                  V - b    2
                                          V
(%i2) vdW:P=vdWP;
                                     R T    a
(%o2)                           P = ----- - --
                                    V - b    2
                                            V
(%i3) vdWT:solve(vdW,T);
                                3        2
                             P V  - b P V  + a V - a b
(%o3)                   [T = -------------------------]
                                          2
                                       R V
(%i4) alpha:(V)*diff(vdWT,V);
                     2                       3        2
                3 P V  - 2 b P V + a   2 (P V  - b P V  + a V - a b)
(%o4)   [0 = V (-------------------- - -----------------------------)]
                           2                          3
                        R V                        R V
(%i5) kappa:-(1/V)/diff(vdWP,V);
                                       1
(%o5)                        - ------------------
                                  2 a     R T
                               V (--- - --------)
                                   3           2
                                  V     (V - b)
(%i6) delC:T*V*(alpha^2/kappa);
                        2                       3        2
                4  3 P V  - 2 b P V + a   2 (P V  - b P V  + a V - a b) 2
(%o6) [0 = - T V  (-------------------- - -----------------------------)
                              2                          3
                           R V                        R V
                                                               2 a     R T
                                                              (--- - --------)]
                                                                3           2
                                                               V     (V - b)
(%i7) factorout(delC,R);
                        2                       3        2
                4  3 P V  - 2 b P V + a   2 (P V  - b P V  + a V - a b) 2
(%o7) [0 = - T V  (-------------------- - -----------------------------)
                              2                          3
                           R V                        R V
                                                               2 a     R T
                                                              (--- - --------)]
                                                                3           2
                                                               V     (V - b)
(%i8) 
Run Example
globalsolve: true;
(%o1)                                true
(%i2) realonly: true;
(%o2)                                true
(%i3) /* Standard (x,y)->
 (r,theta) coordinate translation */x(t) := r(t) * cos(theta(t));
(%o3)                     x(t) := r(t) cos(theta(t))
(%i4) y(t) := r(t) * sin(theta(t));
(%o4)                     y(t) := r(t) sin(theta(t))
(%i5) /* Constant course assumption */declare (slope,constant);
(%o5)                                done
(%i6) declare (slope,real);
(%o6)                                done
(%i7) declare (yintercept,constant);
(%o7)                                done
(%i8) declare (yintercept, real);
(%o8)                                done
(%i9) y(t)=slope * x(t) + yintercept;
(%o9)     r(t) sin(theta(t)) = slope r(t) cos(theta(t)) + yintercept
(%i10) eq1: y(t)=slope * x(t) + yintercept;
(%o10)    r(t) sin(theta(t)) = slope r(t) cos(theta(t)) + yintercept
(%i11) /* Constant speed assumption */declare (speedx,constant);
(%o11)                               done
(%i12) declare (speedx,real);
(%o12)                               done
(%i13) declare (speedy,constant);
(%o13)                               done
(%i14) declare (speedy,real);
(%o14)                               done
(%i15) declare (c1, constant);
(%o15)                               done
(%i16) declare (c1, real);
(%o16)                               done
(%i17) eq2: x(t) = speedx * (t + c1);
(%o17)               r(t) cos(theta(t)) = speedx (t + c1)
(%i18) declare (c2, constant);
(%o18)                               done
(%i19) declare (c2, real);
(%o19)                               done
(%i20) eq3: y(t) = speedy * (t + c1) + c2*speedx;
(%o20)         r(t) sin(theta(t)) = speedy (t + c1) + c2 speedx
(%i21) eq4: (rhs(eq3/eq2));
                          speedy (t + c1) + c2 speedx
(%o21)                    ---------------------------
                                speedx (t + c1)
(%i22) eq5: factorout(eq4, speedx*(t+c1));
                          speedy (t + c1) + c2 speedx
(%o22)                    ---------------------------
                                speedx (t + c1)
(%i23) 

Related Help

Help for Factorout