Sponsored links: Algebra eBooks
 

Related

equal-exp-is

f(x)=x^2;

is(equal(%e^(x),exp(x...

is (%e^(x)=exp(x));

Calculate

equal-ev

if is(equal(ev(gehe),...

Calculate

equal

-8+d*5;

isCorrect: is(equal(5...

isCorrect;

Calculate

equal-ev

if not is(equal(ev(%e...

Calculate

equal-is

RESPONSE : [-1];

LONCAPALIST: ["sin", ...

x1: RESPONSE[1];

Calculate

equal-is

a:2;

b:2;

c:3;

Calculate

equal-is

is(equal( not p and ...

Calculate

equal-equiv_classes-is-lambda

equiv_classes ({1,2,3...

equiv_classes ({0,1,...

Calculate

equal-equiv_classes-is-lambda-remainder

equiv_classes ({0, 1,...

equiv_classes ({1, 1...

equiv_classes ({1, 2...

Calculate

equal

Run Example
(%i1)ans1=matrix([1,2,3],[4,5,6],[7,8,9]);
                                     [ 1  2  3 ]
                                     [         ]
(%o1)                         ans1 = [ 4  5  6 ]
                                     [         ]
                                     [ 7  8  9 ]
(%i2) sum=frobenius(matrixmap(lambda([x],if not(equal(x,0)) then 1),matrix([1,2,3],[4,5,6],[7,8,9])))^2;
                                          [ 1  1  1 ]
                                        2 [         ]
(%o2)                    sum = frobenius ([ 1  1  1 ])
                                          [         ]
                                          [ 1  1  1 ]
(%i3) 
Run Example
equal(x/x, 1);
(%o1)                             equal(1, 1)
(%i2) 
Run Example
ggg(n):=f([a:eval_string("n"), x:charlist(string(n)),b:(sum(eval_string(part(x,k)),k,1,length(x)))])*(is(equal(primep(a)*primep(b),true^2))-unknown)/(true-unknown);
(%o1) ggg(n) := (f([a : eval_string("n"), x : charlist(string(n)), 
b : sum(eval_string(part(x, k)), k, 1, length(x))])
                                    2
 (is(equal(primep(a) primep(b), true )) - unknown))/(true - unknown)
(%i2) sum(ggg(n),n,1,1000);
(%o2) f([991, [9, 9, 1], 19]) + f([977, [9, 7, 7], 23])
 + f([971, [9, 7, 1], 17]) + f([953, [9, 5, 3], 17]) + f([937, [9, 3, 7], 19])
 + f([919, [9, 1, 9], 19]) + f([911, [9, 1, 1], 11]) + f([887, [8, 8, 7], 23])
 + f([883, [8, 8, 3], 19]) + f([881, [8, 8, 1], 17]) + f([863, [8, 6, 3], 17])
 + f([829, [8, 2, 9], 19]) + f([827, [8, 2, 7], 17]) + f([823, [8, 2, 3], 13])
 + f([821, [8, 2, 1], 11]) + f([809, [8, 0, 9], 17]) + f([797, [7, 9, 7], 23])
 + f([773, [7, 7, 3], 17]) + f([757, [7, 5, 7], 19]) + f([751, [7, 5, 1], 13])
 + f([739, [7, 3, 9], 19]) + f([733, [7, 3, 3], 13]) + f([719, [7, 1, 9], 17])
 + f([683, [6, 8, 3], 17]) + f([661, [6, 6, 1], 13]) + f([647, [6, 4, 7], 17])
 + f([643, [6, 4, 3], 13]) + f([641, [6, 4, 1], 11]) + f([607, [6, 0, 7], 13])
 + f([601, [6, 0, 1], 7]) + f([599, [5, 9, 9], 23]) + f([593, [5, 9, 3], 17])
 + f([577, [5, 7, 7], 19]) + f([571, [5, 7, 1], 13]) + f([557, [5, 5, 7], 17])
 + f([487, [4, 8, 7], 19]) + f([467, [4, 6, 7], 17]) + f([463, [4, 6, 3], 13])
 + f([461, [4, 6, 1], 11]) + f([449, [4, 4, 9], 17]) + f([443, [4, 4, 3], 11])
 + f([421, [4, 2, 1], 7]) + f([409, [4, 0, 9], 13]) + f([401, [4, 0, 1], 5])
 + f([397, [3, 9, 7], 19]) + f([379, [3, 7, 9], 19]) + f([373, [3, 7, 3], 13])
 + f([359, [3, 5, 9], 17]) + f([353, [3, 5, 3], 11]) + f([337, [3, 3, 7], 13])
 + f([331, [3, 3, 1], 7]) + f([317, [3, 1, 7], 11]) + f([313, [3, 1, 3], 7])
 + f([311, [3, 1, 1], 5]) + f([283, [2, 8, 3], 13]) + f([281, [2, 8, 1], 11])
 + f([269, [2, 6, 9], 17]) + f([263, [2, 6, 3], 11]) + f([241, [2, 4, 1], 7])
 + f([229, [2, 2, 9], 13]) + f([227, [2, 2, 7], 11]) + f([223, [2, 2, 3], 7])
 + f([199, [1, 9, 9], 19]) + f([197, [1, 9, 7], 17]) + f([193, [1, 9, 3], 13])
 + f([191, [1, 9, 1], 11]) + f([179, [1, 7, 9], 17]) + f([173, [1, 7, 3], 11])
 + f([157, [1, 5, 7], 13]) + f([151, [1, 5, 1], 7]) + f([139, [1, 3, 9], 13])
 + f([137, [1, 3, 7], 11]) + f([131, [1, 3, 1], 5]) + f([113, [1, 1, 3], 5])
 + f([101, [1, 0, 1], 2]) + f([89, [8, 9], 17]) + f([83, [8, 3], 11])
 + f([67, [6, 7], 13]) + f([61, [6, 1], 7]) + f([47, [4, 7], 11])
 + f([43, [4, 3], 7]) + f([41, [4, 1], 5]) + f([29, [2, 9], 11])
 + f([23, [2, 3], 5]) + f([11, [1, 1], 2]) + f([7, [7], 7]) + f([5, [5], 5])
 + f([3, [3], 3]) + f([2, [2], 2])
(%i3) 
[and,equal,if,is,not] [append,block,cons,equal,if,not,return] [apply,equal,lambda,notequal,numberp] [apply,equal,lambda] [assume,coeff,equal,expand,is,ratsimp] [at,block,equal,limit,makelist,plot2d] [bfloat,bftorat,block,emptyp,equal,first,fpprec,if,is,mod,not,numer,ratepsilon,ratprint,return,round] [bftorat,block,emptyp,equal,first,float,fpprec,if,is,mod,not,numer,ratepsilon,ratprint,return,round] [block,cot,equal,errormsg,false,if,is,limit,plot2d,ratprint,solvetrigwarn] [block,denom,equal,ev,fullratsimp,lhs,maplist,return,rhs,trigexpand] [block,depends,diff,equal,exp,first,imagpart,length,rhs,solve,subst] [block,equal,ev,hipow,if,is,or,radcan,subst] [block,equal,if,is,radcan,subst] [block,equal,mod,print,rest] [block,equal,part,reveal,subst] [cos,cosh,equal,ev,exp,is,true] [cos,diff,equal,is,sin] [cos,equal,ev,exp,is,sinh] [cos,equal,function,is,sin] [cos,equal,is,pi,sin,subst] [cos,equal,makelist,numer,sin,subst] [cos,equal,makelist,sin,subst] [delta,equal,is,part,ratsimp,rhs,solve,sqrt] [do,equal,is] [equal,equiv_classes,is,lambda,remainder] [equal,equiv_classes,is,lambda] [equal,equiv_classes] [equal,ev,is,ssubst] [equal,ev,is] [equal,ev] [equal,exp,false,is,simp] [equal,expand,is] [equal,false,is,simp] [equal,float,is] [equal,if,is] [equal,is,log,numer] [equal,is,log] [equal,is,primep,product,sum,unknown] [equal,is,primep,sum,unknown] [equal,is,radcan,sqrt] [equal,is,sin] [equal,is,solve] [equal,is] [equal,lambda,matrix,matrixmap] [equal,makelist,primep,sum,unknown] [equal,makelist,primep,sum] [equal,makelist,primep,unknown] [equal,map] [equal,reveal] [equal]

Related Help

Help for Equal