### Related

##### eigenvectors-matrix-transpose

m:matrix([(2-p)^2,p*(...

t:transpose(m);

e:eigenvectors(t);

Calculate

a:matrix([1,2,0],[0,1...

eigenvectors(a);

Calculate

##### eigenvectors-matrix

H: matrix([E1, g], [g...

J: eigenvectors(H);

v = J[2][1];

Calculate

##### eigenvectors-invert-matrix

A:matrix([-19/6,11/3]...

eigenvectors(A);

T:matrix([-5,1],[1/2,...

Calculate

##### eigenvectors-flatten-matrix-solve

A:matrix([0,1],[1,0]);

B:matrix([2,3],[-1,-2]);

eigenvectors(A);

Calculate

##### eigenvectors-matrix

M:matrix([1/m1,0,0],[...

K:matrix([k1,-k1,0],[...

MK:M.K;

Calculate

##### eigenvectors-matrix

A:matrix([-19/6,11/3]...

eigenvectors(A);

T:matrix([-5,1],[1/2,...

Calculate

##### eigenvectors-kronecker_product-matrix-product-transpose

I: matrix([1,0],[0,1]);

S_z: matrix([1,0],[0,...

S_x: matrix([0,1],[1,...

Calculate

##### eigenvectors-matrix

m: matrix([3,2],[2,0]);

eigenvectors(m);

Calculate

##### eigenvectors-invert-matrix-sqrt

A:matrix([1,2],[4,5]);

eigenvectors(A);

D:matrix([3-2*sqrt(3)...

Calculate

### eigenvectors

Run Example
```(%i1)load(eigen);
(%o1)           /usr/share/maxima/5.21.1/share/matrix/eigen.mac
(%i2) P: matrix([0,1,0],[0,0,1],[1,0,0]);
[ 0  1  0 ]
[         ]
(%o2)                             [ 0  0  1 ]
[         ]
[ 1  0  0 ]
(%i3) Pdag: ctranspose(P);
[ 0  0  1 ]
[         ]
(%o3)                             [ 1  0  0 ]
[         ]
[ 0  1  0 ]
(%i4) A: P+Pdag;
[ 0  1  1 ]
[         ]
(%o4)                             [ 1  0  1 ]
[         ]
[ 1  1  0 ]
(%i5) hermitianmatrix: false;
(%o5)                                false
(%i6) [L, V]: eigenvectors(A);
(%o6)   [[[2, - 1], [1, 2]], [[[1, 1, 1]], [[1, 0, - 1], [0, 1, - 1]]]]
(%i7) Ltmp: [];
(%o7)                                 []
(%i8) Vtmp: [];
(%o8)                                 []
(%i9) for i:1 thru length(L[1]) do    for j:1 thru L[2][i] do      (        Ltmp: append(Ltmp, [L[1][i]]),     Vtmp: append(Vtmp, V[i][j])  );
(%o9)                                done
(%i10) Ltmp;
(%o10)                           [2, - 1, - 1]
(%i11) Vtmp;
(%o11)                  [1, 1, 1, 1, 0, - 1, 0, 1, - 1]
(%i12) U: tranpose(matrix(Vtmp));
(%o12)            tranpose([ 1  1  1  1  0  - 1  0  1  - 1 ])
(%i13) D: apply(diag_matrix, Ltmp);
[ 2   0    0  ]
[             ]
(%o13)                          [ 0  - 1   0  ]
[             ]
[ 0   0   - 1 ]
(%i14) ```
Run Example
```I: matrix([1,0],[0,1]);
[ 1  0 ]
(%o1)                              [      ]
[ 0  1 ]
(%i2) S_z: matrix([1,0],[0,-1]);
[ 1   0  ]
(%o2)                             [        ]
[ 0  - 1 ]
(%i3) S_x: matrix([0,1],[1,0]);
[ 0  1 ]
(%o3)                              [      ]
[ 1  0 ]
(%i4) S_y: matrix([0,-%i],[%i,0]);
[ 0   - %i ]
(%o4)                            [          ]
[ %i   0   ]
(%i5) [vals,vecs]:eigenvectors(kronecker_product(S_x,S_y));
(%o5) [[[- 1, 1], [2, 2]], [[[1, 0, 0, - %i], [0, 1, %i, 0]],
[[1, 0, 0, %i], [0, 1, - %i, 0]]]]
(%i6) ```
Run Example
```A:matrix([1,2],[2,1]);
[ 1  2 ]
(%o1)                              [      ]
[ 2  1 ]
(%i2) eigenvalues(A);
(%o2)                         [[3, - 1], [1, 1]]
(%i3) eigenvectors(A);
(%o3)            [[[3, - 1], [1, 1]], [[[1, 1]], [[1, - 1]]]]
(%i4) ```

### Related Help

Help for Eigenvectors