Sponsored links: Algebra eBooks
 

Related

commutative

? commutative;

97+105;

Calculate

commutative

? commutative;

x=18;

Calculate

commutative

? commutative;

7999+857+1;

Calculate

commutative

? commutative;

x=18;

Calculate

commutative

? commutative;

x=18;

Calculate

commutative-declare-load-solve

load ("vect");

declare(".", commutat...

solve([(o+t*d-c).(o+t...

Calculate

commutative-declare-evfun-load

load(eigen);

load(vector);

T(x):=x*y^2;

Calculate

commutative-declare-load-solve

load ("vect");

declare(".", commutat...

solve([(o+t*d-c).(o+t...

Calculate

commutative-declare-evfun-load

load(eigen);

load(vector);

T(x):=x*y^2;

Calculate

commutative

? commutative;

Calculate

commutative

Run Example
(%i1)load ("vect");
(%o1)           /usr/share/maxima/5.21.1/share/vector/vect.mac
(%i2) declare(".", commutative);
(%o2)                                done
(%i3) solve([(o+t*d-c).(o+t*d-c) = r^2],[t]);
                                                       2
(%o3)                [(d t + o - c) . (d t + o - c) = r ]
(%i4) 
Run Example
? commutative;

 -- Declaration: commutative
     If `declare(h,commutative)' is done, this tells the simplifier
     that `h' is a commutative function.  E.g. `h(x,z,y)' will simplify
     to `h(x, y, z)'.  This is the same as `symmetric'.


  There are also some inexact matches for `commutative'.
  Try `?? commutative' to see them.

(%o1)                                true
(%i2)  97+105;
(%o2)                                 202
(%i3) 
Run Example
load("vect");
(%o1)           /usr/share/maxima/5.21.1/share/vector/vect.mac
(%i2) declare(".", commutative);
(%o2)                                done
(%i3) x: vector([0, 0, 0], [1, 0, 0]);
(%o3)                    vector([0, 0, 0], [1, 0, 0])
(%i4) y: vector([0, 0, 0], [0, 1, 0]);
(%o4)                    vector([0, 0, 0], [0, 1, 0])
(%i5) z: vector([0, 0, 0], [0, 0, 1]);
(%o5)                    vector([0, 0, 0], [0, 0, 1])
(%i6) alpha: 90;
(%o6)                                 90
(%i7) beta: -90;
(%o7)                                - 90
(%i8) gama: 0;
(%o8)                                  0
(%i9) rad (a) := a*%pi/180;
                                          a %pi
(%o9)                           rad(a) := -----
                                           180
(%i10) (alpha: rad (alpha));
                                      %pi
(%o10)                                ---
                                       2
(%i11) (beta: rad (beta));
                                       %pi
(%o11)                               - ---
                                        2
(%i12) (gama: rad (gama));
(%o12)                                 0
(%i13) sinA: sin(alpha);
(%o13)                                 1
(%i14) sinB: sin(beta);
(%o14)                                - 1
(%i15) sinG: sin(gama);
(%o15)                                 0
(%i16) cosA: cos(alpha);
(%o16)                                 0
(%i17) cosB: cos(beta);
(%o17)                                 0
(%i18) cosG: cos(gama);
(%o18)                                 1
(%i19) Rz: matrix([cosG, -sinG, 0],[sinG, cosG, 0],[0, 0, 1]);
                                  [ 1  0  0 ]
                                  [         ]
(%o19)                            [ 0  1  0 ]
                                  [         ]
                                  [ 0  0  1 ]
(%i20) Rx: matrix([1, 0, 0],[0, cosA, -sinA],[0, sinA, cosA]);
                                 [ 1  0   0  ]
                                 [           ]
(%o20)                           [ 0  0  - 1 ]
                                 [           ]
                                 [ 0  1   0  ]
(%i21) Ry: matrix([cosB, 0, sinB],[0, 1, 0],[-sinB, 0, cosB]);
                                 [ 0  0  - 1 ]
                                 [           ]
(%o21)                           [ 0  1   0  ]
                                 [           ]
                                 [ 1  0   0  ]
(%i22) R;
(%o22)                                 R
(%i23) (R: (Rz . Rx));
                                 [ 1  0   0  ]
                                 [           ]
(%o23)                           [ 0  0  - 1 ]
                                 [           ]
                                 [ 0  1   0  ]
(%i24) (R: (Ry . R));
                                [ 0  - 1   0  ]
                                [             ]
(%o24)                          [ 0   0   - 1 ]
                                [             ]
                                [ 1   0    0  ]
(%i25) RT;
(%o25)                                RT
(%i26) (RT: transpose(R));
                                [  0    0   1 ]
                                [             ]
(%o26)                          [ - 1   0   0 ]
                                [             ]
                                [  0   - 1  0 ]
(%i27) 

Related Help

Help for Commutative