### Related

cauchysum:true;

sumexpand:false;

gensumnum:1;

Calculate

##### cauchysum-false-fullratsimp-gensumnum-inf-intosum-psexpand-sumcontract-sumexpand-true

cauchysum:false;

psexpand:false;

simpproduct:true;

Calculate

##### cauchysum-sum

sum ( (x-2)^n*2^(1-n)...

Calculate

##### cauchysum-collectterms-false-gensumnum-inf-intosum-psexpand-simpsum-sumcontract-sumexpand-true

cauchysum:false;

psexpand:false;

simpproduct:true;

Calculate

##### cauchysum-intosum-simpsum-sum-sumcontract-sumexpand-true

a: sum(a[k], k, 1, 10...

b: sum(b[k], k, 1, 10...

sum(a+b, k, 1, 10);

Calculate

##### cauchysum-false-inf-sumexpand-true

sumexpand: false;

cauchysum: false;

s: sum (f(i), i, 0, ...

Calculate

##### cauchysum-false-gensumnum-inf-intosum-psexpand-sumcontract-sumexpand-true

cauchysum:true;

psexpand:false;

simpproduct:true;

Calculate

cauchysum:false;

psexpand:false;

simpproduct:true;

Calculate

##### cauchysum-false-simpsum-sum-sumcontract-sumexpand-true

a: sum(a[k], k, 1, 10...

b: sum(b[k], k, 1, 10...

sum(a+b, k, 1, 10);

Calculate

cauchysum:true;

sumexpand:false;

gensumnum:1;

Calculate

### cauchysum

Run Example
```(%i1)sum (2^i + i^2, i, 0, n), cauchysum;
n
====
\       i    2
(%o1)                            >    (2  + i )
/
====
i = 0
(%i2) ```
Run Example
```cauchysum:true;
(%o1)                                true
(%i2) psexpand:multi;
(%o2)                                multi
(%i3) sumexpand:false;
(%o3)                                false
(%i4) gensumnum:0;
(%o4)                                  0
(%i5) intosum(sumcontract(sum(sum(1/((2*k)^s), k, 1, inf) + sum(1/((2*k+1)^s), k, 0, inf), s, 2,2))), simpsum;
inf
====                      2
\           1          %pi
(%o5)                      >    -------------- + ----
/        2              24
====  4 k  + 4 k + 1
k = 0
(%i6) ```
Run Example
```cauchysum:true;
(%o1)                                true
(%i2) psexpand:false;
(%o2)                                false
(%i3) simpproduct:true;
(%o3)                                true
(%i4) sumexpand:false;
(%o4)                                false
(%i5) gensumnum:1;
(%o5)                                  1
(%i6) sumcontract(intosum(sum(sum(1/((2*k)^s), k, 1, inf) + sum(1/((2*k+1)^s), k, 0, inf), s, 2,2))), simpsum;
inf
====                      2
\           1          %pi
(%o6)                      >    -------------- + ----
/        2              24
====  4 k  + 4 k + 1
k = 0
(%i7) ```

### Related Help

Help for Cauchysum