### Related

##### break-makelist

A: makelist(i, i, 1, ...

for i in A do (if i =...

Calculate

##### break-do-equal-is

samat(x,y) := is(equa...

x1 : 1;

for k : -10 step 1 th...

Calculate

kill(all);

makearray(z,5);

Calculate

? break;

Calculate

kill(all);

makearray(z,5);

Calculate

##### break-makelist

A: makelist(i, i, 1, ...

for i in A do (if i =...

Calculate

##### break-do-equal-is

samat(x,y) := is(equa...

x1 : 1;

for k : -10 step 1 th...

Calculate

kill(all);

makearray(z,5);

Calculate

? break;

Calculate

kill(all);

makearray(z,5);

Calculate

### break

Run Example
(%i1)kill(all);
(%o0)                                done
(%o1)      /usr/share/maxima/5.21.1/share/simplification/functs.mac
(%i2) makearray(z,5);
(%o2)                           makearray(z, 5)
(%i3) z:[0,1,2,3,4];
(%o3)                           [0, 1, 2, 3, 4]
(%i4) Z:setify(z);
(%o4)                           {0, 1, 2, 3, 4}
(%o5)                    addmod(x, y) := mod(x + y, 5)
(%i6) multmod(x,y):=mod(x*y,5);
(%o6)                    multmod(x, y) := mod(x y, 5)
(%i7) n:length(z);
(%o7)                                  5
(%i8) /*Abelian Property wrt Multiplication*/for i:1 thru n do(    for j:1 thru n do(        if multmod(z[i],z[j])=multmod(z[i],z[j]) then        flag:1        else(            flag:0,break)        ));
(%o8)                                done
(%i9) if flag=0 then(    disp("Abelian Property fails under multiplication:"),    flag1:0);
(%o9)                                false
(%i10) elsedisp("Ableian Property is satisfied under multiplication and hence it given ring is COMMUTATIVE RING");
(%o10) elsedisp(Ableian Property is satisfied under multiplication and hence i\
t given ring is COMMUTATIVE RING)
(%i11)
Run Example
xvals: map(rhs,solve(x^2=9));
(%o1)                              [- 3, 3]
(%i2) yvals: map(lhs,solve(x^2=9));
(%o2)                               [x, x]
(%i3) yvals[1] - xvals[1];
(%o3)                                x + 3
(%o4)                           [x + 3, x + 3]
(%i5) for i:1 while i<
=(length(realroots(x^2=9))) do (mye:(yvals[i] - xvals[i]) - (answers[i]),if(is(ratsimp(abs(mye)<
= 0))) then return (100) else return (99),break());
(%o5)                                 100
(%i6)
Run Example
xvals: map(rhs,solve(x^2=9));
(%o1)                              [- 3, 3]
(%i2) yvals: map(lhs,solve(x^2=9));
(%o2)                               [x, x]
(%i3) yvals[1] - xvals[1];
(%o3)                                x + 3