Sponsored links: Algebra eBooks
 

Related

apropos-rat

p(z):= a*z^2+b;

q(z):= c*z^2+d;

nxt(ns) := rat(ns[1]^...

Calculate

apropos

apropos("num");

Calculate

apropos-function

value : 3;

equation : a+2 =b;

function(x) := x + 3;

Calculate

apropos

apropos("help");

Calculate

apropos-diff-integrate-sin-taylor

f(x) := sin(b*x) ;

diff( f(x), x);

taylor( f(x),x,0,5);

Calculate

apropos-function

value : 3;

equation : a+2 =b;

function(x) := x + 3;

Calculate

apropos

apropos ("part");

Calculate

apropos-rat

p(z):= a*z^2+b;

q(z):= c*z^2+d;

nxt(ns) := rat(ns[1]^...

Calculate

apropos

apropos( "taylor" );

Calculate

apropos-function

value : 3;

equation : a+2 =b;

function(x) := x + 3;

Calculate

apropos

Run Example
(%i1)apropos("cdf_binomial");
(%o1)                                 []
(%i2) 
Run Example
apropos("help");
(%o1)                               [help]
(%i2) 
Run Example
apropos("solve");
(%o1) [baksolve, desolve, funcsolve, globalsolve, linsolve, linsolvewarn, 
linsolve_by_lu, linsolve_params, solve, solvedecomposes, solveexplicit, 
solvefactors, solvenullwarn, solveradcan, solvetrigwarn, tmlinsolve]
(%i2) describe(globalsolve);

 -- Option variable: globalsolve
     Default value: `false'

     When `globalsolve' is `true', solved-for variables are assigned
     the solution values found by `linsolve', and by `solve' when
     solving two or more linear equations.

     When `globalsolve' is `false', solutions found by `linsolve' and
     by `solve' when solving two or more linear equations are expressed
     as equations, and the solved-for variables are not assigned.

     When solving anything other than two or more linear equations,
     `solve' ignores `globalsolve'.  Other functions which solve
     equations (e.g., `algsys') always ignore `globalsolve'.

     Examples:

          (%i1) globalsolve: true$
          (%i2) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
          Solution

                                           17
          (%t2)                        x : --
                                           7

                                             1
          (%t3)                        y : - -
                                             7
          (%o3)                     [[%t2, %t3]]
          (%i3) x;
                                         17
          (%o3)                          --
                                         7
          (%i4) y;
                                           1
          (%o4)                          - -
                                           7
          (%i5) globalsolve: false$
          (%i6) kill (x, y)$
          (%i7) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
          Solution

                                           17
          (%t7)                        x = --
                                           7

                                             1
          (%t8)                        y = - -
                                             7
          (%o8)                     [[%t7, %t8]]
          (%i8) x;
          (%o8)                           x
          (%i9) y;
          (%o9)                           y


(%o2)                                true
(%i3) 

Related Help

Help for Apropos