### Related

apropos ("bou");

Calculate

##### apropos

apropos("solve");

Calculate

##### apropos-integrate-log-ratsimp

v(r) := A*(1-(r/R)^2 ...

apropos("assume");

Q: integrate(v(r)*2*p...

Calculate

##### apropos-rat

p(z):= a*z^2+b;

q(z):= c*z^2+d;

nxt(ns) := rat(ns[1]^...

Calculate

##### apropos-function

value : 3;

equation : a+2 =b;

function(x) := x + 3;

Calculate

##### apropos-diff-integrate-sin-taylor

f(x) := sin(b*x) ;

diff( f(x), x);

taylor( f(x),x,0,5);

Calculate

##### apropos-describe-solvenullwarn

apropos("solve");

describe(solvenullwarn);

Calculate

##### apropos-describe-solveexplicit

apropos("solve");

describe(solveexplicit);

Calculate

? apropos;

Calculate

##### apropos-function

value : 3;

equation : a+2 =b;

function(x) := x + 3;

Calculate

### apropos

Run Example
```(%i1)apropos("cdf_binomial");
(%o1)                                 []
(%i2) ```
Run Example
```apropos("help");
(%o1)                               [help]
(%i2) ```
Run Example
```apropos("solve");
(%o1) [baksolve, desolve, funcsolve, globalsolve, linsolve, linsolvewarn,
linsolve_by_lu, linsolve_params, solve, solvedecomposes, solveexplicit,
(%i2) describe(globalsolve);

-- Option variable: globalsolve
Default value: `false'

When `globalsolve' is `true', solved-for variables are assigned
the solution values found by `linsolve', and by `solve' when
solving two or more linear equations.

When `globalsolve' is `false', solutions found by `linsolve' and
by `solve' when solving two or more linear equations are expressed
as equations, and the solved-for variables are not assigned.

When solving anything other than two or more linear equations,
`solve' ignores `globalsolve'.  Other functions which solve
equations (e.g., `algsys') always ignore `globalsolve'.

Examples:

(%i1) globalsolve: true\$
(%i2) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17
(%t2)                        x : --
7

1
(%t3)                        y : - -
7
(%o3)                     [[%t2, %t3]]
(%i3) x;
17
(%o3)                          --
7
(%i4) y;
1
(%o4)                          - -
7
(%i5) globalsolve: false\$
(%i6) kill (x, y)\$
(%i7) solve ([x + 3*y = 2, 2*x - y = 5], [x, y]);
Solution

17
(%t7)                        x = --
7

1
(%t8)                        y = - -
7
(%o8)                     [[%t7, %t8]]
(%i8) x;
(%o8)                           x
(%i9) y;
(%o9)                           y

(%o2)                                true
(%i3) ```

Help for Apropos