Sponsored links: Algebra eBooks
 

Related

antisymmetric-declare

h((x, x),(y, z),(z, y));

declare(h,antisymmetr...

Calculate

antisymmetric-declare

h((2, 2),(1, 1),(0, 0...

declare(h,antisymmetr...

Calculate

antisymmetric

h((1, 2),(1, 4),(1, 3...

? antisymmetric;

Calculate

antisymmetric

h((1,1));

? antisymmetric;

Calculate

antisymmetric

h((1, 2),(1, 4),(1, 3...

? antisymmetric;

Calculate

antisymmetric-declare

h((2, 2),(1, 1),(0, 0...

declare(h,antisymmetr...

Calculate

antisymmetric

h((a, a),(b, b),(c, c...

? antisymmetric;

Calculate

antisymmetric

? antisymmetric;

Calculate

antisymmetric

h((1, 2),(1, 4),(1, 3...

? antisymmetric;

Calculate

antisymmetric

h((1, 2),(1, 4),(1, 3...

? antisymmetric;

Calculate

antisymmetric

Run Example
(%i1)h((1,3) ,(3,1),(2,1));
(%o1)                             h(3, 1, 1)
(%i2) ? antisymmetric;

 -- Declaration: antisymmetric
     If `declare(h,antisymmetric)' is done, this tells the simplifier
     that `h' is antisymmetric.  E.g. `h(x,z,y)' will simplify to `-
     h(x, y, z)'.  That is, it will give (-1)^n times the result given
     by `symmetric' or `commutative', where n is the number of
     interchanges of two arguments necessary to convert it to that form.


(%o2)                                true
(%i3) 
Run Example
? antisymmetric;

 -- Declaration: antisymmetric
     If `declare(h,antisymmetric)' is done, this tells the simplifier
     that `h' is antisymmetric.  E.g. `h(x,z,y)' will simplify to `-
     h(x, y, z)'.  That is, it will give (-1)^n times the result given
     by `symmetric' or `commutative', where n is the number of
     interchanges of two arguments necessary to convert it to that form.


(%o1)                                true
(%i2) 
Run Example
h((1,1));
(%o1)                                h(1)
(%i2) ? antisymmetric;

 -- Declaration: antisymmetric
     If `declare(h,antisymmetric)' is done, this tells the simplifier
     that `h' is antisymmetric.  E.g. `h(x,z,y)' will simplify to `-
     h(x, y, z)'.  That is, it will give (-1)^n times the result given
     by `symmetric' or `commutative', where n is the number of
     interchanges of two arguments necessary to convert it to that form.


(%o2)                                true
(%i3) 

Related Help

Help for Antisymmetric