### Related

##### antisymmetric-declare

h((2, 2),(1, 1),(0, 0...

declare(h,antisymmetr...

Calculate

? antisymmetric;

Calculate

##### antisymmetric-declare

h((2, 2),(1, 1),(0, 0...

declare(h,antisymmetr...

Calculate

? antisymmetric;

Calculate

##### antisymmetric-declare-exp-log-solve

IP: (%K1 *(%PBase+(PB...

declare (IP, antisymm...

solve(IP=%LimIP, PBra...

Calculate

##### antisymmetric

h((a, a),(b, b),(c, c...

? antisymmetric;

Calculate

##### antisymmetric-declare

h((a, a),(b, b),(c, c...

declare(h,antisymmetr...

Calculate

##### antisymmetric-declare

h((2, 2),(1, 1),(0, 0));

declare(h,antisymmetr...

Calculate

##### antisymmetric-declare-exp-log-solve

IP: (%K1 *(%PBase+(PB...

declare (IP, antisymm...

solve(IP=%LimIP, PBra...

Calculate

##### antisymmetric-declare

h((2, 2),(1, 1),(0, 0...

declare(h,antisymmetr...

Calculate

### antisymmetric

Run Example
```(%i1)? antisymmetric;

-- Declaration: antisymmetric
If `declare(h,antisymmetric)' is done, this tells the simplifier
that `h' is antisymmetric.  E.g. `h(x,z,y)' will simplify to `-
h(x, y, z)'.  That is, it will give (-1)^n times the result given
by `symmetric' or `commutative', where n is the number of
interchanges of two arguments necessary to convert it to that form.

(%o1)                                true
(%i2) ```
Run Example
```h((x, x),(y, z),(z, y));
(%o1)                             h(x, z, y)
(%i2) declare(h,antisymmetric);
(%o2)                                done
(%i3) ```
Run Example
```h((0, 0),(1, 1),(2, 2),(3, 3),(4, 4),(1, 0),(0, 2),(1, 2),(3, 2));
(%o1)                    h(0, 1, 2, 3, 4, 0, 2, 2, 2)
(%i2) declare(h,antisymmetric);
(%o2)                                done
(%i3) ```

### Related Help

Help for Antisymmetric