### Related

##### assume-integrate-sqrt

assume (t>0);

integrate (s*s/sqrt(t...

Calculate

assume(s > 0);

assume(t1 > t0);

Calculate

##### assume-inf-integrate

assume(a>0);

f(r):= r/(r^2+a^2)^2;

integrate(f(r),r,0,inf);

Calculate

##### taylor

f:(1+x)^(1/x);

tf:taylor(f,x,3,1);

Calculate

##### assume-diff-ev-integrate-sin

dy(x):=diff(y(x),x);

ddy(x):=diff(dy(x),x);

Calculate

##### taylor

taylor((1/1-x^20),x,0...

Calculate

##### assume-define-plot2d-sin-sqrt-subst

assume(s > 0);

assume(m > 0);

t(x):=sqrt(2*((x*m)-0...

Calculate

##### true

f: a and not d and (n...

f,a=false, b=false, c...

f,a=false, b=false, c...

Calculate

##### taylor

eq1:A*(1+z)/(1-r*z);

eq2: taylor(eq1,z,0,3);

eq3:eq2/z;

Calculate

##### assume-diff-ev-integrate-plot2d-sin

/*Solución exacta*/ye...

/*Aproximación de pri...

dy(x):=diff(y(x),x);

Calculate

### [assume,hypergeometric,taylor,true]

Run Example
```(%i1)assume(n>
1,k<
n);
(%o1)                           [n > 1, n > k]
(%i2) h:hypergeometric([k,k-n],[1/2+k-n],x), expand_hypergeometric : true;
1
(%o2)            hypergeometric([k, k - n], [- n + k + -], x)
2
(%i3) taylor(h,x,0,3);
2
(2 k  - 2 n k) x
(%o3)/T/ 1 + ----------------
2 k - 2 n + 1
4                3       2             2       2            2
(2 k  + (- 4 n + 4) k  + (2 n  - 6 n + 2) k  + (2 n  - 2 n) k) x
+ -----------------------------------------------------------------
2                      2
4 k  + (- 8 n + 8) k + 4 n  - 8 n + 3
6                  5        2               4
+ ((4 k  + (- 12 n + 24) k  + (12 n  - 60 n + 52) k
3       2                3          3       2               2
+ (- 4 n  + 48 n  - 104 n + 48) k  + (- 12 n  + 60 n  - 72 n + 16) k
3       2             3       3                   2
+ (- 8 n  + 24 n  - 16 n) k) x )/(24 k  + (- 72 n + 108) k
2                        3        2
+ (72 n  - 216 n + 138) k - 24 n  + 108 n  - 138 n + 45) + . . .
(%i4) ```
Run Example
```assume(n>
1,k<
n);
(%o1)                           [n > 1, n > k]
(%i2) h:hypergeometric([k,k-n],[1/2+k-n],x), expand_hypergeometric : true;
1
(%o2)            hypergeometric([k, k - n], [- n + k + -], x)
2
(%i3) taylor(h,x,0,1);
2
(2 k  - 2 n k) x
(%o3)/T/                 1 + ---------------- + . . .
2 k - 2 n + 1
(%i4) ```

### Related Help

Help for Assume

Help for Hypergeometric

Help for Taylor

Help for True