### The Maxima on-line user's manual

Algebra Calculator

#### Sumexpand

-- Option variable: sumexpand Default value: `false`

When `sumexpand` is `true`, products of sums and exponentiated sums simplify to nested sums.

See also `cauchysum`.

Examples:

```          (%i1) sumexpand: true\$
(%i2) sum (f (i), i, 0, m) * sum (g (j), j, 0, n);
m      n
====   ====
\      \
(%o2)                >      >     f(i1) g(i2)
/      /
====   ====
i1 = 0 i2 = 0
(%i3) sum (f (i), i, 0, m)^2;
m      m
====   ====
\      \
(%o3)                >      >     f(i3) f(i4)
/      /
====   ====
i3 = 0 i4 = 0```

```(%o1)                                true
(%i2) ```

### Related Examples

##### sumexpand-true

sumexpand: true;

x : (8*(-a/2 + b/2 + ...

abc / expand(x);

Calculate

sumexpand:true;

sum(c-k,k,1,c);

Calculate

##### sumexpand-true

sumexpand: true;

x : (-a/2 + b/2 + c/2...

Calculate

##### sumexpand-true

sumexpand:true;

x:sum(c-k,k,1,c);

expand(x);

Calculate

##### sumexpand-true

sumexpand: true;

x : 8*(-a/2 + b/2 + c...

q : expand(x)/(a*b*c);

Calculate

##### sumexpand-true

sumexpand: true;

x : (8*(-a/2 + b/2 + ...

abc / expand(x);

Calculate

##### sumexpand-true

sumexpand: true;

x : 8*(-a/2 + b/2 + c...

q : a*b*c/expand(x);

Calculate

##### sumexpand-true

sumexpand: true;

x : 8*(-a/2 + b/2 + c...

expand(x);

Calculate

##### sumexpand-true

sumexpand: true;

x : 8*(-a/2 + b/2 + c...

q : expand(x)/(a*b*c);

Calculate

##### sumexpand-true

sumexpand: true;

x : 8*(-a/2 + b/2 + c...

q : expand(x)/(a*b*c);

Calculate