Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Rank

Function: rank (<M>) Computes the rank of the matrix <M>. That is, the order of the largest non-singular subdeterminant of <M>.

linsolve([x*5+y*2+z*3=0,x*1+y*1+z*0=0,x*1+y*0+z*4=0],[x,y,z]);
A:matrix([2,2],[4,4],[0,0]);
rank(A);

<rank> may return the wrong answer if it cannot determine that a matrix element that is equivalent to zero is indeed so.

There are also some inexact matches for rank. Try ?? rank to see them.

(%o1)                                true
(%i2) 

Related Examples

rank

eq1: a1 - 2*a2 + a3 = 0;

eq2: a4 - 2*a5 + a6 = 0;

eq3: a7 - 2*a8 + a9 = 0;

Calculate

rank

rank([[1,1],[1,0]]);

Calculate

rank

eq1: a1 - 2*a2 + a3 = 0;

eq2: a4 - 2*a5 + a6 = 0;

eq3: a7 - 2*a8 + a9 = 0;

Calculate

rank

eq1: a1 - 2*a2 + a3 = 0;

eq2: a4 - 2*a5 + a6 = 0;

eq3: a7 - 2*a8 + a9 = 0;

Calculate

rank

rank([[1,1],[1,0]]);

Calculate

rank

V1:[1,0,2];

V2:[-2,1,1];

V3:[0,1,5];

Calculate

rank

rank([[1,1],[1,0]]);

Calculate