### The Maxima on-line user's manual

Algebra Calculator

#### Search:

Function: quad_qaws (<f(x)>, <x>, <a>, <b>, <alpha>, <beta>, <wfun>, [<epsrel>, <epsabs>, <limit>])

Function: quad_qaws (<f>, <x>, <a>, <b>, <alpha>, <beta>, <wfun>, [<epsrel>, <epsabs>, <limit>]) Integration of w(x) f(x) over a finite interval, where w(x) is a certain algebraic or logarithmic function. A globally adaptive subdivision strategy is applied, with modified Clenshaw-Curtis integration on the subintervals which contain the endpoints of the interval of integration.

`quad_qaws` computes the integral using the Quadpack QAWS routine:

integrate (f(x)*w(x), x, a, b)

The weight function w is selected by <wfun>:

`1` w(x) = (x - a)^alpha (b - x)^beta

`2` w(x) = (x - a)^alpha (b - x)^beta log(x - a)

`3` w(x) = (x - a)^alpha (b - x)^beta log(b - x)

`4` w(x) = (x - a)^alpha (b - x)^beta log(x - a) log(b - x)

The integrand may be specified as the name of a Maxima or Lisp function or operator, a Maxima lambda expression, or a general Maxima expression.

The keyword arguments are optional and may be specified in any order. They all take the form `key=val`. The keyword arguments are:

<epsrel> Desired relative error of approximation. Default is 1d-8.

<epsabs> Desired absolute error of approximation. Default is 0.

<limit> Size of internal work array. <limit>is the maximum number of subintervals to use. Default is 200.

`quad_qaws` returns a list of four elements:

* an approximation to the integral,

* the estimated absolute error of the approximation,

* the number integrand evaluations,

* an error code.

The error code (fourth element of the return value) can have the values:

`0` no problems were encountered;

`1` too many sub-intervals were done;

`2` excessive roundoff error is detected;

`3` extremely bad integrand behavior occurs;

`6` if the input is invalid.

Examples:

```          (%i1) quad_qaws (1/(x+1+2^(-4)), x, -1, 1, -0.5, -0.5, 1,
epsabs=1d-9);
(%o1)     [8.750097361672832, 1.24321522715422E-10, 170, 0]
(%i2) integrate ((1-x*x)^(-1/2)/(x+1+2^(-alpha)), x, -1, 1);
alpha
Is  4 2      - 1  positive, negative, or zero?```

pos; alpha alpha 2 %pi 2 sqrt(2 2 + 1)

`          (%o2)              -------------------------------`
`                                         alpha`
`                                      4 2      + 2`
`          (%i3) ev (%, alpha=4, numer);`
`          (%o3)                     8.750097361672829`

```(%o1)                                true
(%i2) ```