Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Phi Calculator

Phi

-- Constant: %phi %phi represents the so-called golden mean, (1 + sqrt(5))/2. The numeric value of %phi is the double-precision floating-point value 1.618033988749895d0.

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

load(orthopoly);
tubo:spherical_harmonic(2,0,theta,phi);
plot3d(tubo^2,[theta,0,%pi],[phi,0,2*%pi],[transform_xy,spherical_to_xyz],[grid,30,60]);

By default, Maxima does not know the algebraic properties of

     %phi.  After evaluating tellrat(%phi^2 - %phi - 1) and
     algebraic: true, ratsimp can simplify some expressions
     containing %phi.

Examples:

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

          (%i1) fibtophi (fib (n));
                                     n             n
                                 %phi  - (1 - %phi)
          (%o1)                  -------------------
                                     2 %phi - 1
          (%i2) fib (n-1) + fib (n) - fib (n+1);
          (%o2)          - fib(n + 1) + fib(n) + fib(n - 1)
          (%i3) fibtophi (%);
                      n + 1             n + 1       n             n
                  %phi      - (1 - %phi)        %phi  - (1 - %phi)
          (%o3) - --------------------------- + -------------------
                          2 %phi - 1                2 %phi - 1
                                                    n - 1             n - 1
                                                %phi      - (1 - %phi)
                                              + ---------------------------
                                                        2 %phi - 1
          (%i4) ratsimp (%);
          (%o4)                           0

By default, Maxima does not know the algebraic properties of

     %phi.  After evaluating tellrat (%phi^2 - %phi - 1) and
     algebraic: true, ratsimp can simplify some expressions
     containing %phi.

          (%i1) e : expand ((%phi^2 - %phi - 1) * (A + 1));
                           2                      2
          (%o1)        %phi  A - %phi A - A + %phi  - %phi - 1
          (%i2) ratsimp (e);
                            2                     2
          (%o2)        (%phi  - %phi - 1) A + %phi  - %phi - 1
          (%i3) tellrat (%phi^2 - %phi - 1);
                                      2
          (%o3)                  [%phi  - %phi - 1]
          (%i4) algebraic : true;
          (%o4)                         true
          (%i5) ratsimp (e);
          (%o5)                           0

There are also some inexact matches for phi. Try ?? phi to see them.

(%o1)                                true
(%i2) 

Phi Example

Related Examples

phi

l:100;

e:2;

nu:0.3;

Calculate

phi-sin-subst-taylor

f:taylor(sin(%pi/6+x));

f1:subst(x=%pi/24,f);

v:%phi(f1);

Calculate

phi-radcan-sqrt

phi: (1+sqrt(5))/2;

k: 1/(2*phi + 1);

radcan(k^2*5*sqrt(phi...

Calculate

phi-sqrt

phi(z):= sqrt(105/(2*...

phi(-L/2);

phi(L/2);

Calculate

phi-plot2d
plot2d((x^2),[x,-2,2]);

plot2d((x^2),[x,-2,2]);

phi;

Calculate

phi-sinh-taylor

cbar: (1/xi)*sinh(xi*...

taylor(cbar,phi,0,3);

Calculate

phi-sin-subst-taylor

f:taylor(sin(%pi/6+x));

f1:subst(x=%pi/24,f);

v:%phi(f1);

Calculate

phi

phi(n) := for x in if...

phi(10);

Calculate

phi

phi(3259);

Calculate