Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Phi Calculator

Phi

-- Constant: %phi %phi represents the so-called golden mean, (1 + sqrt(5))/2. The numeric value of %phi is the double-precision floating-point value 1.618033988749895d0.

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

plot3d ((r^4-r*(sin(phi)-cos(phi)))^(1/4), [r,0,20], [phi,0,2*%pi], [grid, 30, 80], [transform_xy, polar_to_xy], [legend, false]);

By default, Maxima does not know the algebraic properties of

     %phi.  After evaluating tellrat(%phi^2 - %phi - 1) and
     algebraic: true, ratsimp can simplify some expressions
     containing %phi.

Examples:

fibtophi expresses Fibonacci numbers fib(n) in terms of %phi.

          (%i1) fibtophi (fib (n));
                                     n             n
                                 %phi  - (1 - %phi)
          (%o1)                  -------------------
                                     2 %phi - 1
          (%i2) fib (n-1) + fib (n) - fib (n+1);
          (%o2)          - fib(n + 1) + fib(n) + fib(n - 1)
          (%i3) fibtophi (%);
                      n + 1             n + 1       n             n
                  %phi      - (1 - %phi)        %phi  - (1 - %phi)
          (%o3) - --------------------------- + -------------------
                          2 %phi - 1                2 %phi - 1
                                                    n - 1             n - 1
                                                %phi      - (1 - %phi)
                                              + ---------------------------
                                                        2 %phi - 1
          (%i4) ratsimp (%);
          (%o4)                           0

By default, Maxima does not know the algebraic properties of

     %phi.  After evaluating tellrat (%phi^2 - %phi - 1) and
     algebraic: true, ratsimp can simplify some expressions
     containing %phi.

          (%i1) e : expand ((%phi^2 - %phi - 1) * (A + 1));
                           2                      2
          (%o1)        %phi  A - %phi A - A + %phi  - %phi - 1
          (%i2) ratsimp (e);
                            2                     2
          (%o2)        (%phi  - %phi - 1) A + %phi  - %phi - 1
          (%i3) tellrat (%phi^2 - %phi - 1);
                                      2
          (%o3)                  [%phi  - %phi - 1]
          (%i4) algebraic : true;
          (%o4)                         true
          (%i5) ratsimp (e);
          (%o5)                           0

There are also some inexact matches for phi. Try ?? phi to see them.

(%o1)                                true
(%i2) 

Phi Example

Related Examples

phi-sqrt

r(x,y,z,xc,yc,zc):=sq...

phi(r(x,y,z,xc,yc,zc)...

Calculate

phi-sqrt

r(x,y,z):=sqrt(x^2+y^...

phi:q/r(x-l,y,z)-q/r(...

package(vect);

Calculate

phi-sqrt

phi(z) := (1+z+z^2)/3;

g(z) := (3-z+sqrt(9-6...

z*phi( g(z) );

Calculate

phi-solve-tan

eq1:V=h*pi/3*(R^2+R*r...

solve(eq1,h);

eq2:h=(R-r)/tan(phi);

Calculate

phi-sin-solve

solve(lb*sin(teta_2)-...

Calculate

phi

l:325;

b:650;

h1:150;

Calculate

phi-sinh-taylor

c: (1/xi)*sinh(xi*phi...

taylor(c, phi, 0, 7);

Calculate

phi-solve-tan

eq1:V=h*pi/3*(R^2+R*r...

eq2:solve(eq1,h);

eq3:h=(R-r)/tan(phi);

Calculate

phi-sqrt

phi(z) := (1+z+z^2)/3;

g(z) := (3-z+sqrt(9-6...

z*phi( g(z) );

Calculate