The Maxima on-line user's manual

Algebra Calculator

Orderless

Function: orderless (<v_1>, ..., <v_n>) `ordergreat` changes the canonical ordering of Maxima expressions such that <v_1> succeeds <v_2> succeeds ... succeeds <v_n>, and <v_n> succeeds any other symbol not mentioned as an argument.

`orderless` changes the canonical ordering of Maxima expressions such that <v_1> precedes <v_2> precedes ... precedes <v_n>, and <v_n> precedes any other variable not mentioned as an argument.

The order established by `ordergreat` and `orderless` is dissolved by `unorder`. `ordergreat` and `orderless` can be called only once each, unless `unorder` is called; only the last call to `ordergreat` and `orderless` has any effect.

See also `ordergreatp`.

There are also some inexact matches for `orderless`. Try `?? orderless` to see them.

```(%o1)                                true
(%i2) ```

Related Examples

orderless

p:2*y*z^2+x*z^3;

+2*x*z^4;

orderless(y,x,z);

Calculate

orderless

p:2*y*z^2+x*z^3;

+2*x*z^4;

orderless(y,x,z);

Calculate

orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,z,y);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

orderless

orderless(z,y,x);

pol:2*y*z^2+x*z^3+2...

Calculate

orderless-unorder

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,y,z);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(z,x);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(y,z,x);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(x,z,y);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

orderless

p:2*y*z^2+x*z^3+2*x*z^4;

orderless(y,x,z);

p:2*y*z^2+x*z^3+2*x*z^4;

Calculate

? orderless;

Calculate