Sponsored links: Algebra eBooks ### The Maxima on-line user's manual

Algebra Calculator

#### Search: #### Letsimp

Function: letsimp (<expr>)

Function: letsimp (<expr>, <package_name>)

Function: letsimp (<expr>, <package_name_1>, ..., <package_name_n>) Repeatedly applies the substitution rules defined by `let` until no further change is made to <expr>.

`letsimp (<expr>)` uses the rules from `current_let_rule_package`.

`letsimp (<expr>, <package_name>)` uses the rules from <package_name> without changing `current_let_rule_package`.

`letsimp (<expr>, <package_name_1>, ..., <package_name_n>)` is equivalent to `letsimp (<expr>, <package_name_1>`, followed by

`     `letsimp (%, <package_name_2>)`, and so on.`

```(%o1)                                true
(%i2) ```

### Related Examples

? letsimp;

Calculate

##### letsimp-minf

letsimp(1/x, minf);

Calculate

letsimp(n!/n);

Calculate

##### letsimp

r=1/2 + 3^(1/4)/2^(1/...

letsimp(r^2);

Calculate

? letsimp;

Calculate

##### letsimp-minf

letsimp(1/x, minf);

Calculate

letsimp(n!/n);

Calculate

##### letsimp

r=1/2 + 3^(1/4)/2^(1/...

letsimp(r^2);

Calculate 