Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Letsimp

Function: letsimp (<expr>)

matchdeclare (n, true);
 let (n!/n, (n-1)!);
 letrat: false;
 letsimp (a!/a);
 letrat: true;
 letsimp (a!/a);

Function: letsimp (<expr>, <package_name>)

Function: letsimp (<expr>, <package_name_1>, ..., <package_name_n>) Repeatedly applies the substitution rules defined by let until no further change is made to <expr>.

letsimp (<expr>) uses the rules from current_let_rule_package.

letsimp (<expr>, <package_name>) uses the rules from <package_name> without changing current_let_rule_package.

letsimp (<expr>, <package_name_1>, ..., <package_name_n>) is equivalent to letsimp (<expr>, <package_name_1>, followed by

     letsimp (%, <package_name_2>), and so on.

(%o1)                                true
(%i2) 

Related Examples

letsimp-minf

letsimp(1/x, minf);

Calculate

letsimp

letsimp(n!/n);

Calculate

letsimp

r=1/2 + 3^(1/4)/2^(1/...

letsimp(r^2);

Calculate

letsimp-minf

letsimp(1/x, minf);

Calculate

letsimp

letsimp(n!/n);

Calculate

letsimp

r=1/2 + 3^(1/4)/2^(1/...

letsimp(r^2);

Calculate