Sponsored links: Algebra eBooks ### The Maxima on-line user's manual

Algebra Calculator

#### Search: #### Jacobi_p

Function: jacobi_p (<n>, <a>, <b>, <x>) The Jacobi polynomial.

The Jacobi polynomials are actually defined for all <a> and <b>; however, the Jacobi polynomial weight `(1 - <x>)^<a> (1 + <x>)^<b>` isnt integrable for `<a> <= -1` or `<b> <= -1`.

Reference: Abramowitz and Stegun, equation 22.5.42, page 779.

```(%o1)                                true
(%i2) ```

### Related Examples

? jacobi_p;

Calculate

##### jacobi_p

jacobi_p(4,1,1,x);

Calculate

##### jacobi_p

s:jacobi_p(0,1,1,x);

Calculate

##### jacobi_p

jacobi_p(0,1,1,x);

jacobi_p(1,1,1,x);

jacobi_p(2,1,1,x);

Calculate

##### jacobi_p

jacobi_p(0,1,1,x);

Calculate

? jacobi_p;

Calculate

##### jacobi_p

jacobi_p(4,1,1,x);

Calculate

##### jacobi_p

s:jacobi_p(0,1,1,x);

Calculate

##### jacobi_p

jacobi_p(0,1,1,x);

jacobi_p(1,1,1,x);

jacobi_p(2,1,1,x);

Calculate

##### jacobi_p

jacobi_p(0,1,1,x);

Calculate 