Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Funmake Calculator

Funmake

Function: funmake (<F>, [<arg_1>, ..., <arg_n>]) Returns an expression <F>(<arg_1>, ..., <arg_n>). The return value is simplified, but not evaluated, so the function <F> is not called, even if it exists.

(assume(a<0, b<=0, notequal(c,0), d >=0, e > 0, equal(f,0)),  l: [a,b,c,d,e,f,g],           funmake(

funmake does not attempt to distinguish array functions from ordinary functions; when <F> is the name of an array function, funmake returns <F>(...) (that is, a function call with parentheses instead of square brackets). arraymake returns a function call with square brackets in this case.

funmake evaluates its arguments.

Examples:

funmake applied to an ordinary Maxima function.

          (%i1) F (x, y) := y^2 - x^2;
                                             2    2
          (%o1)                  F(x, y) := y  - x
          (%i2) funmake (F, [a + 1, b + 1]);
          (%o2)                    F(a + 1, b + 1)
          (%i3) %;
                                        2          2
          (%o3)                  (b + 1)  - (a + 1)

funmake applied to a macro.

          (%i1) G (x) ::= (x - 1)/2;
                                            x - 1
          (%o1)                    G(x) ::= -----
                                              2
          (%i2) funmake (G, [u]);
          (%o2)                         G(u)
          (%i3) %;
                                        u - 1
          (%o3)                         -----
                                          2

funmake applied to a subscripted function.

          (%i1) H [a] (x) := (x - 1)^a;
                                                  a
          (%o1)                   H (x) := (x - 1)
                                   a
          (%i2) funmake (H [n], [%e]);
                                                 n
          (%o2)               lambda([x], (x - 1) )(%e)
          (%i3) %;
                                              n
          (%o3)                       (%e - 1)
          (%i4) funmake ((H [n]), [%e]);
          (%o4)                        H (%e)
                                        n
          (%i5) %;
                                              n
          (%o5)                       (%e - 1)

funmake applied to a symbol which is not a defined function of any kind.

          (%i1) funmake (A, [u]);
          (%o1)                         A(u)
          (%i2) %;
          (%o2)                         A(u)

funmake evaluates its arguments, but not the return value.

          (%i1) det(a,b,c) := b^2 -4*a*c;
                                              2
          (%o1)              det(a, b, c) := b  - 4 a c
          (%i2) (x : 8, y : 10, z : 12);
          (%o2)                          12
          (%i3) f : det;
          (%o3)                          det
          (%i4) funmake (f, [x, y, z]);
          (%o4)                    det(8, 10, 12)
          (%i5) %;
          (%o5)                         - 284

Maxima simplifies funmakes return value.

          (%i1) funmake (sin, [%pi / 2]);
          (%o1)                           1

(%o1)                                true
(%i2) 

Funmake Example

Related Examples

funmake

f (x, y) := y^2 - x^2;

funmake (f, [a + 1, ...

''%;

Calculate

funmake

F (x, y) := y^2 - x^2;

funmake (F, [a + 1, ...

''%;

Calculate

funmake

f (x, y) := y^2 - x^2;

funmake (f, [a + 1, ...

''%;

Calculate

funmake

F (x, y) := y^2 - x^2;

funmake (F, [a + 1, ...

''%;

Calculate