### The Maxima on-line user's manual

Algebra Calculator

#### Divsum

Function: divsum (<n>, <k>)

Function: divsum (<n>) `divsum (<n>, <k>)` returns the sum of the divisors of <n> raised to the <k>th power.

`divsum (<n>)` returns the sum of the divisors of <n>.

```          (%i1) divsum (12);
(%o1)                          28
(%i2) 1 + 2 + 3 + 4 + 6 + 12;
(%o2)                          28
(%i3) divsum (12, 2);
(%o3)                          210
(%i4) 1^2 + 2^2 + 3^2 + 4^2 + 6^2 + 12^2;
(%o4)                          210```

```(%o1)                                true
(%i2) ```

### Related Examples

##### divsum

divsum (12);

1 + 2 + 3 + 4 + 6 + 12;

divsum (12, 2);

Calculate

##### divsum-numer

divsum(5^4*13^5*43^2*...

Calculate

##### divsum-numer

divsum(5^40*7^20*13^2...

Calculate

##### divsum-numer

divsum(5^20*7^20*13^2...

divsum(3^2*5^2*7)/(2*...

Calculate

##### divsum

d(n):=divsum(n)-n;

isa(n):=if d(d(n))=n ...

isa(220);

Calculate

##### divsum

d(n):=divsum(n)-n;

isa(n):=if d(d(n))=n ...

isa(220);

Calculate

##### divsum-numer

divsum(5^2*7*13*19*29...

Calculate

##### divsum

divsum(5^20*7^20*13^2...

Calculate

##### divsum-mod-print

mydigit : 5 ;

mystart : 10 ^ mydigit ;

myend : mystart / 10 ;

Calculate

divsum(6);

Calculate