Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Constant

-- Special operator: constant declare (<a>, constant) declares <a> to be a constant. See declare.

There are also some inexact matches for constant. Try ?? constant to see them.

declare(A, constant);
declare(C, constant);
dgtr(theta):=(C)/((A^2)*(cos(theta)^2) + (sin(theta)^2))^2;
pdfh(theta):=dgtr(theta)*cos(theta);
dpdfphi(theta) := pdfh(theta) * sin(theta);
pdfphi(phi):=integrate(dpdfphi(theta), theta, 0, %pi/2);
pdfphi(phi);
pdftheta(theta) = pdfphi(phi)/pdfh(theta);
cdfphi(x):=integrate(pdfphi(phi),phi,0,x);
cdftheta(x):=integrate(pdftheta(theta),theta,0,x);
f(x):=integrate(x * y, y, 0, 1 - x);
f(x);
expand(f(x));
g(x):=integrate(f(x), x);
g(x);
plot2d([g(x)], [x, 0, 2], [y, -0.5, 2.5]);
quad_qagi(f(x), x, 0, inf);
A:1 / quad_qagi(f(x), x, 0, inf);

(%o1)                                true
(%i2) 

Related Examples

constant-cos-declare-derivabbrev-diff-mainvar-sin-solve-subst-true

derivabbrev:true ;

declare (t, mainvar);

declare (theta, mainv...

Calculate

constant-cos-declare-diff-let-letsimp-sin-solve

x(t) := r(t) * sin(th...

y(t) := r(t) * cos(th...

declare (m,constant);

Calculate

constant-cos-declare-factor-solve-sqrt

declare(C, constant);

declare(P, constant);

declare(l, constant);

Calculate

constant-cos-declare-diff-sin-sqrt

declare(x2, constant);

declare(y2, constant);

declare(y4, constant);

Calculate

constant-cos-declare-ratsubst-sqrt-tex

declare(C, constant);

declare(P, constant);

declare(l, constant);

Calculate

constant-declare-diff-sum

declare(layer_size, c...

a(x):=sum(w[i]*x[i],i...

diff(a(xx), xx[1]);

Calculate

constant-cos-declare-diff-sin-sqrt

T(t):=pi/30*200*t;

declare(x2, constant);

declare(y2, constant);

Calculate

constant-cos-declare-derivabbrev-diff-mainvar-sin-solve-true

derivabbrev:true ;

declare (t, mainvar);

declare (m, constant);

Calculate

constant-debugmode-declare-plot3d-true
plot3d([[f(x, z), [x, XMIN, XMAX], [z, 0, 30]], [u(x,z), [x, XMIN, XMAX], [z, 0, 30]]], [legend, false], [azimuth,220]);

debugmode(true);

f(x,z):= x/(x+z) * (x...

u(x,z):= 1/2;

Calculate