### The Maxima on-line user's manual

Algebra Calculator

#### Bessel_j

Function: bessel_j (<v>, <z>) The Bessel function of the first kind of order v and argument z.

`bessel_j` is defined as

inf ==== k - v - 2 k v + 2 k \ (- 1) 2 z > -------------------------- / k! gamma(v + k + 1) ==== k = 0

although the infinite series is not used for computations.

There are also some inexact matches for `bessel_j`. Try `?? bessel_j` to see them.

```(%o1)                                true
(%i2) ```

### Related Examples

##### bessel_j

a:bessel_j(nu,x^2);

b:bessel_j(nu-1,x);

Calculate

h=1/8*exp(0.009359/8)...

f(x):= exp(-x^...

z(r):=1/4*(first(q...

Calculate

##### bessel_j-bessel_y-plot2d

plot2d(bessel_j(0,x)*...

Calculate

##### bessel_j-exp-expand-plot2d-realpart-sqrt

ber(n,x):= realpart(e...

plot2d(ber(0,x),[x,0,...

plot2d(ber(0,x)/exp(x...

Calculate

##### bessel_j-collectterms-diff-factor-sqrt

a : diff(bessel_j(0,s...

b : factor(diff(a,x,2...

collectterms(b) ;

Calculate

##### bessel_j-plot2d

plot2d(bessel_j(0,x),...

Calculate

##### bessel_j-diff-sqrt

a : diff(bessel_j(0,s...

diff(a,x,x) ;

Calculate

##### bessel_j-plot2d

plot2d( bessel_j(0,x)...

Calculate

##### bessel_j-exp-plot2d-sqrt

series(exp(x),x,0);

plot2d(bessel_j(1,sqr...

Calculate