Sponsored links: Algebra eBooks ### The Maxima on-line user's manual

Algebra Calculator

#### Search: #### Bessel_j

Function: bessel_j (<v>, <z>) The Bessel function of the first kind of order v and argument z. `bessel_j` is defined as

inf ==== k - v - 2 k v + 2 k \ (- 1) 2 z > -------------------------- / k! gamma(v + k + 1) ==== k = 0

although the infinite series is not used for computations.

There are also some inexact matches for `bessel_j`. Try `?? bessel_j` to see them.

```(%o1)                                true
(%i2) ```

### Related Examples

##### bessel_j

bessel_j(-14.57541899...

Calculate

##### bessel_j

a:bessel_j(nu,x^2);

Calculate

##### bessel_j-bessel_y-sqrt

smj:sqrt(1/2)*(-1+%i);

bessel_j(0,smj*4.6)*b...

Calculate

h=5/8*exp(0.0125)*(ex...

f(x):= exp(-x^2/8)/(0...

Calculate

##### bessel_j-bessel_y-sqrt

smj:sqrt(1/2)*(-1+%i);

bessel_j(0,smj*4.6)*b...

Calculate

##### bessel_j-diff-sqrt

a : diff(bessel_j(0,s...

diff(a,x,2) ;

Calculate

##### bessel_j-diff-sqrt

a = diff(bessel_j(0,s...

a ;

Calculate

##### bessel_j

a:bessel_j(nu,x^2);

b:bessel_j(nu+1,x);

bessimp(a);

Calculate

0.007614;

h=1.072/8*exp(0.00816...

f(x):= exp(-x^...

Calculate

##### bessel_j-diff

diff( bessel_j(1,x), x);

Calculate 