Sponsored links: Algebra eBooks ### The Maxima on-line user's manual

Algebra Calculator

#### Search: #### Belln

Function: belln (<n>) Represents the n-th Bell number. `belln(n)` is the number of partitions of a set with <n> members. For nonnegative integers <n>, `belln(<n>)` simplifies to the n-th Bell number. `belln` does not simplify for any other arguments.

`belln` distributes over equations, lists, matrices, and sets.

Examples:

`belln` applied to nonnegative integers.

```          (%i1) makelist (belln (i), i, 0, 6);
(%o1)               [1, 1, 2, 5, 15, 52, 203]
(%i2) is (cardinality (set_partitions ({})) = belln (0));
(%o2)                         true
(%i3) is (cardinality (set_partitions ({1, 2, 3, 4, 5, 6})) =
belln (6));
(%o3)                         true```

`belln` applied to arguments which are not nonnegative integers.

```          (%i1) [belln (x), belln (sqrt(3)), belln (-9)];
(%o1)        [belln(x), belln(sqrt(3)), belln(- 9)]```

```(%o1)                                true
(%i2) ```

### Related Examples

belln(1001);

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

belln(1001);

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate

##### belln

belln(100)/(1000*3600...

Calculate 