Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Assume Calculator

Assume

Function: assume (<pred_1>, ..., <pred_n>) Adds predicates <pred_1>, ..., <pred_n> to the current context. If a predicate is inconsistent or redundant with the predicates in the current context, it is not added to the context. The context accumulates predicates from each call to assume.

assume(r>0);
assume(d>0);
assume(b>0);
rr(t):=sqrt(r*r+rp*rp-2*r*rp*cos(t));
x(t):=rr(t)/(2*d);
f(t):=1/d*(6/5-2*x(t)^2+3/2*x(t)^3-5*x(t)^5);
expand(f(t)*sin(t));
integrate(expand(f(t)*sin(t)),t);
integrate(f(t)*sin(t),t);

assume returns a list whose elements are the predicates added to the context or the atoms redundant or inconsistent where applicable.

The predicates <pred_1>, ..., <pred_n> can only be expressions with the relational operators < <= equal notequal >= and >. Predicates cannot be literal equality = or literal inequality # expressions, nor can they be predicate functions such as integerp.

Compound predicates of the form <pred_1> and ... and <pred_n> are recognized, but not <pred_1> or ... or <pred_n>. not <pred_k> is recognized if <pred_k> is a relational predicate. Expressions of the form not (<pred_1> and <pred_2>) and not (<pred_1> or <pred_2>) are not recognized.

Maximas deduction mechanism is not very strong; there are many obvious consequences which cannot be determined by is. This is a known weakness.

assume does not handle predicates with complex numbers. If a predicate contains a complex number assume returns inconsistent or redunant.

assume evaluates its arguments.

See also is, facts, forget, context, and declare.

Examples:

          (%i1) assume (xx > 0, yy < -1, zz >= 0);
          (%o1)              [xx > 0, yy < - 1, zz >= 0]
          (%i2) assume (aa < bb and bb < cc);
          (%o2)                  [bb > aa, cc > bb]
          (%i3) facts ();
          (%o3)     [xx > 0, - 1 > yy, zz >= 0, bb > aa, cc > bb]
          (%i4) is (xx > yy);
          (%o4)                         true
          (%i5) is (yy < -yy);
          (%o5)                         true
          (%i6) is (sinh (bb - aa) > 0);
          (%o6)                         true
          (%i7) forget (bb > aa);
          (%o7)                       [bb > aa]
          (%i8) prederror : false;
          (%o8)                         false
          (%i9) is (sinh (bb - aa) > 0);
          (%o9)                        unknown
          (%i10) is (bb^2 < cc^2);
          (%o10)                       unknown

There are also some inexact matches for assume. Try ?? assume to see them.

(%o1)                                true
(%i2) 

Assume Example

Related Examples

assume-diff-integrate-plot2d
plot2d ([yexa(x),yvar(x)], [x, 0, 2],[legend,"exacta","variacional"],[style,lines]);

/* [wxMaxima batch fi...

dy(x):=diff(y(x),x);

ddy(x):=diff(dy(x),x);

Calculate

assume-is

P(x,y, z):=(1-(1-x)*(...

assume(0 <= p, p &...

assume(0 <= q, q &...

Calculate

assume-atvalue-diff-laplace-limit-solve

assume(R0>0, R1>...

atvalue(vc(t),t=0,Vc0);

atvalue(il(t),t=0,Il0);

Calculate

assume-integrate-sqrt

assume(w>0, h>0);

integrate(integrate((...

Calculate

assume-facts-integrate

(assume(x*y>0),fac...

f(x,y):=(integrate(%e...

Calculate

assume-define-exp-sqrt

assume(k>0);

define(A(x),(2*exp(-a...

define(C(x),(exp(-a*x...

Calculate

assume-ev-expand-float-fullratsimp-integrate-rhs-solve

f(m):=m+t;

eq1:''integrate(f(m),...

sol1:solve(eq1,t);

Calculate

assume-integrate

assume(t>0);

integrate(t^3/(%e^t-1...

Calculate

assume-distrib-integrate-load

load(distrib);

assume(sx > 0);

assume(sy > 0);

Calculate