Sponsored links: Algebra eBooks
 

Help Index

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

The Maxima on-line user's manual

Algebra Calculator

Search:

Args

Function: args (<expr>) Returns the list of arguments of expr, which may be any kind of expression other than an atom. Only the arguments of the top-level operator are extracted; subexpressions of expr appear as elements or subexpressions of elements of the list of arguments.

expr: x . dx . dy + z . dy . dz + y . dx . dz;
expr2: x . [dx, dy] + z . [dy, dz] + y . [dx, dz];
expr3: x * [dx, dy] + z * [dy, dz] + y * [dx, dz];
expr4: [x, dx, dy] + [z, dy, dz] + [y, dx, dz];
expr5: [[x, dx, dy], [z, dy, dz], [y, dx, dz]];
expr6: x . del(x) . del(y) + z . del(y) . del(z) + y . del(x) . del(z);
part(expr, 1);
length(expr);
op(expr);
args(expr);
map(op, args(expr));
map(args, args(expr));
map(args, args(expr6));
diffform(vars, expr) := block(    [n, k],    0);
diff(x + y);

The order of the items in the list may depend on the global flag inflag.

args (<expr>) is equivalent to substpart ("[", <expr>, 0). See also substpart, and op.

There are also some inexact matches for args. Try ?? args to see them.

(%o1)                                true
(%i2) 

Related Examples

args-sqrt

eq: sqrt(a*b);

alist: args(eq);

Calculate

args-determinant-expand-factor-ident-invert-matrix-solve-transpose

A:matrix([4,-5,7],[1,...

B:A-t*ident(3);

C:determinant(B);

Calculate

args-determinant-expand-factor-ident-invert-matrix-solve-transpose

A:matrix([4,-5,7],[1,...

B:A-t*ident(3);

C:determinant(B);

Calculate

args-display-do-inpart-lambda-map-op

f(x):= x^2;

op(f(x));

args(f(x));

Calculate

args-matrix

M1: matrix([n,x1,x2],...

args(M1);

Calculate

args-block-concat-infix-matchfix-nary-nofix-pi-postfix-prefix-tex1-texput

texput (me,"\\mu_e");

tex (me);

texput (lcm, "\\math...

Calculate

args

args(a+b*c+d^2+2);

Calculate

args-draw-draw2d-explicit-load-matrix
  draw2d(         color      = red,         key        = "Linear interpolator",         explicit(f(x),x,6,12),         point_size = 3,         color      = blue,         key        = "Sample points",         points(args(p)));

load(interpol);

p: matrix([7,2],[8,3]...

linearinterpol(p);

Calculate